Odpowiedź:
Gdy masz funkcję wymierną ze stopniem licznika mniejszym lub równym mianownikowi. …
Wyjaśnienie:
Biorąc pod uwagę: Skąd wiesz, że funkcja ma poziomą asymptotę?
Istnieje wiele sytuacji, które powodują poziome asymptoty. Oto para:
A. Kiedy masz racjonalną funkcję
B. Gdy masz funkcję wykładniczą
C. Niektóre z funkcji hiperbolicznych (część rachunku)
Jakie są zasady poziomej asymptoty? + Przykład
Aby uzyskać asymptoty poziome, musisz dwukrotnie obliczyć dwa limity. Twoja asymptota jest reprezentowana jako linia f (x) = ax + b, gdzie a = lim_ (x-> infty) f (x) / xb = lim_ (x-> infty) f (x) -ax I te same ograniczenia muszą być obliczane w ujemnej nieskończoności, aby uzyskać odpowiedni wynik. Jeśli potrzeba więcej wyjaśnień - napisz w komentarzach. Dodam przykład później.
Proton poruszający się z prędkością vo = 3.0 * 10 ^ 4 m / s jest rzutowany pod kątem 30o powyżej płaszczyzny poziomej. Jeśli pole elektryczne 400 N / C działa w dół, jak długo trwa powrót protonu do płaszczyzny poziomej?
Wystarczy porównać obudowę z ruchem pocisku. Cóż, w ruchu pocisku, stała siła skierowana w dół działa tak, jak grawitacja, tutaj pomijając grawitację, siła ta jest spowodowana tylko replikacją przez pole elektryczne. Ładunek naładowany protonem zostaje odpychany wzdłuż kierunku pola elektrycznego, które jest skierowane w dół. Tak więc, w porównaniu z g, przyspieszenie w dół będzie F / m = (Eq) / m, gdzie m jest masą, q jest ładunkiem protonu. Teraz wiemy, że całkowity czas lotu dla ruchu pocisku jest podany jako (2u sin theta) / g, gdzie u jest prędkością projekcji, a theta jest kątem pro
Jaka jest wartość asymptoty poziomej? Opisz jego znaczenie w kontekście problemu.
A) y = 96; maksymalna liczba łosi, które można utrzymać w lesie jednocześnie. Jest to dobre praktyczne zastosowanie algebry w systemach rzeczywistych! Prawidłowa interpretacja otrzymanych równań jest równie ważna, jak ich prawidłowe obliczanie. „Asymptota” to wartość, do której zbliża się linia lub trend wartości, nawet nie docierając do niej. W tym przypadku „pozioma” asymptota jest tą, która odnosi się do stosunku wyrażenia, gdy wartość „x” wzrasta. Widzimy jakościowo, że 60x wzrośnie szybciej niż 1 + 0,625x, więc współczynnik wzrośnie.Ostatecznie „1” staje się nieistotny, a limit (asymptota