Odpowiedź:
Projekcja jest
Wyjaśnienie:
Projekcja wektorowa
Tutaj,
W związku z tym, Produkt dot
Moduł
W związku z tym
Średnia liczba rzutów wolnych wykonanych podczas gry w koszykówkę zależy bezpośrednio od liczby godzin ćwiczeń w ciągu tygodnia. Gdy gracz ćwiczy 6 godzin tygodniowo, średnio gra za 9 rzutów wolnych. Jak napisać równanie dotyczące godzin?
F = 1.5h> "pozwól f reprezentować rzuty wolne i h godziny ćwiczone" "instrukcja jest" fproph ", aby przekonwertować do równania pomnożonego przez k stałą" "odmiany" f = kh ", aby znaleźć k użyć danego warunku" h = 6 "i" f = 9 f = khrArrk = f / h = 9/6 = 3/2 = 1,5 "równanie to kolor" (czerwony) (pasek (kolor ul (| kolor (biały) (2/2)) (czarny) (f = 1.5h) kolor (biały) (2/2) |)))
Jaki jest rzut (8i + 12j + 14k) na (2i + 3j - 7k)?
Projekcja wektorowa jest = -36 / sqrt62 <2, 3, -7> Projekcja wektorowa vecb na veca to proj_ (veca) vecb = (veca.vecb) / (|| veca ||) ^ 2veca veca = <2 , 3, -7> vecb = <8, 12,14> Produkt kropki to veca.vecb = <2,3, -7>. <8,12,14> = (2) * (8) + (3) * (12) + (- 7) * (14) = 16 + 36-84 = -36 Moduł veca = = || veca || = || <2,3, -7> || = sqrt ((2) ^ 2 + (3) ^ 2 + (- 7) ^ 2) = sqrt (4 + 9 + 49) = sqrt62 Dlatego proj_ (veca) vecb = -36 / sqrt62 <2, 3, -7>
Stoisz na linii rzutów wolnych od koszykówki i wykonujesz 30 prób zrobienia kosza. Robisz 3 koszyki lub 10% strzałów. Czy słusznie jest powiedzieć, że trzy tygodnie później, kiedy staniesz na linii rzutów wolnych, prawdopodobieństwo zrobienia kosza przy pierwszej próbie wynosi 10% lub 0,10?
To zależy. Wymagałoby to wielu założeń, które prawdopodobnie nie będą prawdziwe w przypadku ekstrapolacji tej odpowiedzi z danych podanych jako rzeczywiste prawdopodobieństwo wykonania strzału. Sukces pojedynczej próby można oszacować na podstawie proporcji poprzednich prób, które zakończyły się sukcesem tylko wtedy, gdy próby są niezależne i identycznie rozmieszczone. Jest to założenie poczynione w rozkładzie dwumianowym (zliczającym) oraz rozkładzie geometrycznym (oczekującym). Jednak strzelanie do rzutów wolnych jest bardzo mało prawdopodobne, aby były niezależne lub identycznie rozmieszczo