Lim (e ^ x + x) ^ (1 / x) jako x 0 +?

Lim (e ^ x + x) ^ (1 / x) jako x 0 +?
Anonim

Odpowiedź:

#lim_ (x-> 0 ^ +) (e ^ x + x) ^ (1 / x) = e ^ 2 #

Wyjaśnienie:

#lim_ (x-> 0 ^ +) (e ^ x + x) ^ (1 / x) #

  • # (e ^ x + x) ^ (1 / x) = e ^ (ln (e ^ x + x) ^ (1 / x)) = e ^ (ln (e ^ x + x) / x) #

#lim_ (x-> 0 ^ +) ln (e ^ x + x) / x = _ (DLH) ^ ((0/0)) ##lim_ (x-> 0 ^ +) ((ln (e ^ x + x)) ') / ((x)') # #=#

#lim_ (x-> 0 ^ +) (e ^ x + 1) / (e ^ x + x) = 2 #

W związku z tym, #lim_ (x-> 0 ^ +) (e ^ x + x) ^ (1 / x) = lim_ (x-> 0 ^ +) e ^ (ln (e ^ x + x) / x) = #

Zestaw

#ln (e ^ x + x) / x = u #

# x-> 0 ^ + #

# u-> 2 #

#=# #lim_ (u-> 2) e ^ u = e ^ 2 #