Odpowiedź:
Zobacz proces rozwiązania poniżej:
Wyjaśnienie:
Suma dowolnych 5 kolejnych liczb całkowitych jest w rzeczywistości równomiernie podzielna przez 5!
Aby to pokazać, nazwijmy pierwszą liczbę całkowitą:
Następnie następnymi czterema liczbami całkowitymi będą:
Dodanie tych pięciu liczb całkowitych daje:
Jeśli podzielimy tę sumę dowolnych 5 kolejnych liczb całkowitych przez
Bo
Dlatego suma pięciu kolejnych liczb całkowitych jest równomiernie podzielna przez
Czy to stwierdzenie jest prawdziwe czy fałszywe, a jeśli fałszywe, w jaki sposób podkreślona część może być poprawna, aby była prawdziwa?
TRUE Dany: | y + 8 | + 2 = 6 kolor (biały) ("d") -> kolor (biały) ("d") y + 8 = + - 4 Odejmij 2 z obu stron | y + 8 | = 4 Biorąc pod uwagę, że warunek PRAWDA to kolor (brązowy) („Lewa strona = RHS”) Więc musimy mieć: | + -4 | = + 4 Tak więc y + 8 = + - 4 Tak więc podane dane są prawdziwe
Iloczyn dwóch kolejnych liczb całkowitych wynosi 24. Znajdź dwie liczby całkowite. Odpowiedz w formie sparowanych punktów z najniższą z dwóch liczb całkowitych na początku. Odpowiedź?
Dwie kolejne liczby całkowite parzyste: (4,6) lub (-6, -4) Niech, kolor (czerwony) (n i n-2 będą dwoma kolejnymi parzystymi liczbami całkowitymi, gdzie kolor (czerwony) (nwZZ Produkt n i n-2 wynosi 24, tj. n (n-2) = 24 => n ^ 2-2n-24 = 0 Teraz [(-6) + 4 = -2 i (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 lub n + 4 = 0 ... do [n inZZ] => kolor (czerwony) (n = 6 lub n = -4 (i) kolor (czerwony) (n = 6) => kolor (czerwony) (n-2) = 6-2 = kolor (czerwony) (4) Więc dwie kolejne liczby całkowite parzyste: (4,6) (ii)) kolor (czerwony) (n = -4) => kolor (czerwony) (n-2) = -4
Znając wzór na sumę N liczb całkowitych a) jaka jest suma pierwszych N kolejnych liczb całkowitych kwadratowych, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma pierwszych N kolejnych liczb całkowitych sześcianu Sigma_ (k = 1) ^ N k ^ 3?
Dla S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Mamy sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rozwiązywanie dla sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tak sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /