Odpowiedź:
Wyjaśnienie:
Podstawowa faktoryzacja
#543 = 3 * 181#
Ponieważ nie ma współczynników kwadratowych większych niż
Jest to irracjonalna liczba między
Liniowo interpolujemy, możemy przybliżyć:
#sqrt (543) ~~ 23+ (543-529) / (576-529) = 23 14/47 ~~ 23.3 #
Aby uzyskać większą dokładność, pozwól
# {(p_ (i + 1) = p_i ^ 2 + 543 q_i ^ 2), (q_ (i + 1) = 2p_iq_i):} #
Więc:
# {(p_1 = p_0 ^ 2 + 543 q_0 ^ 2 = 233 ^ 2 + 543 * 10 ^ 2 = 54289 + 54300 = 108589), (q_1 = 2 p_0 q_0 = 2 * 233 * 10 = 4660):} #
Wystarczy ta jedna iteracja, aby ją uzyskać
#sqrt (543) ~~ p_1 / q_1 = 108589/4660 ~~ 23.30236 #
Jeśli chcemy większej dokładności, wystarczy powtórzyć iterację.
Notatka
Dokładna powtarzająca się część dla
# 543 = 23; bar (3,3,3,1,14,1,3,3,46) #
z którego można znaleźć rozwiązanie równania Pella:
#669337^2 = 543 * 28724^2 + 1#
który robi
Co to jest [5 (pierwiastek kwadratowy z 5) + 3 (pierwiastek kwadratowy z 7)] / [4 (pierwiastek kwadratowy z 7) - 3 (pierwiastek kwadratowy z 5)]?
(159 + 29sqrt (35)) / 47 kolorów (biały) („XXXXXXXX”) zakładając, że nie popełniłem żadnych błędów arytmetycznych (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5)) Racjonalizuj mianownik mnożąc przez koniugat: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5)) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Jaki jest pierwiastek kwadratowy z 3 + pierwiastek kwadratowy z 72 - pierwiastek kwadratowy z 128 + pierwiastek kwadratowy z 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Wiemy, że 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, więc sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Wiemy, że 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, więc sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Wiemy, że 128 = 2 ^ 7 , więc sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Simplifying 7sqrt (3) - 2sqrt (2)
Jaki jest pierwiastek kwadratowy z 7 + pierwiastek kwadratowy z 7 ^ 2 + pierwiastek kwadratowy z 7 ^ 3 + pierwiastek kwadratowy z 7 ^ 4 + pierwiastek kwadratowy z 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Pierwszą rzeczą, którą możemy zrobić, to anulować korzenie na tych z parzystymi mocami. Ponieważ: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 dla dowolnej liczby, możemy po prostu powiedzieć, że sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Teraz 7 ^ 3 można przepisać jako 7 ^ 2 * 7, i że 7 ^ 2 może wydostać się z korzenia! To samo dotyczy 7 ^ 5, ale zostało przepisane jako 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49