Odpowiedź:
Wyjaśnienie:
Podam pierwszą liczbę całkowitą zmienną
Na podstawie podanych informacji są to uzyskane równania:
Zamienię drugie równanie i zastąpię je pierwszym:
Teraz zastąp:
Teraz zastąp to innym równaniem do rozwiązania
Iloczyn dwóch kolejnych nieparzystych liczb całkowitych wynosi 29 mniej niż 8 razy ich suma. Znajdź dwie liczby całkowite. Odpowiedz w formie sparowanych punktów z najniższą z dwóch liczb całkowitych na początku?
(13, 15) lub (1, 3) Niech x i x + 2 będą nieparzystymi kolejnymi numerami, a następnie Jak na pytanie, mamy (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 lub 1 Teraz, PRZYPADEK I: x = 13:. x + 2 = 13 + 2 = 15:. Liczby to (13, 15). PRZYPADEK II: x = 1:. x + 2 = 1+ 2 = 3:. Liczby to (1, 3). Stąd, ponieważ tutaj powstają dwie sprawy; para liczb może być zarówno (13, 15) lub (1, 3).
Suma trzech kolejnych liczb całkowitych wynosi 71 mniej niż najmniejsza z liczb całkowitych. Jak znaleźć liczby całkowite?
Niech najmniejsza z trzech kolejnych liczb całkowitych będzie x Suma trzech kolejnych liczb całkowitych będzie następująca: (x) + (x + 1) + (x + 2) = 3x + 3 Powiedziano nam, że 3x + 3 = x-71 rarr 2x = -74 rarr x = -37, a trzy kolejne liczby całkowite to -37, -36 i -35
„Lena ma 2 kolejne liczby całkowite.Zauważa, że ich suma jest równa różnicy między ich kwadratami. Lena wybiera kolejne 2 kolejne liczby całkowite i zauważa to samo. Udowodnij algebraicznie, że jest to prawdą dla 2 kolejnych liczb całkowitych?
Prosimy odnieść się do Wyjaśnienia. Przypomnijmy, że kolejne liczby całkowite różnią się o 1. Stąd, jeśli m jest jedną liczbą całkowitą, to kolejna liczba całkowita musi być n + 1. Suma tych dwóch liczb całkowitych wynosi n + (n + 1) = 2n + 1. Różnica między ich kwadratami to (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, zależnie od potrzeb! Poczuj radość matematyki!