Odpowiedź:
Numer to
Wyjaśnienie:
Niech liczba będzie
Więc możemy pisać
Odwrotna liczba będzie
Więc możemy pisać
lub
lub
lub
lub
Dodawanie równania
dostajemy
lub
lub
lub
lub
Podłączając wartość
Dostajemy
lub
lub
Dlatego liczba jest
Suma cyfr w dwucyfrowej liczbie wynosi 10. jeśli cyfry są odwrócone, nowa liczba będzie o 54 więcej niż oryginalna liczba. Jaki jest oryginalny numer?
28 Załóżmy, że cyfry to aib. Oryginalna liczba to 10a + b Odwrócona liczba to a + 10b Podajemy: a + b = 10 (a + 10b) - (10a + b) = 54 Z drugiego z tych równań mamy: 54 = 9b - 9a = 9 (ba) Stąd ba = 54/9 = 6, więc b = a + 6 Zastępując to wyrażenie dla b do pierwszego równania, które znajdujemy: a + a + 6 = 10 Stąd a = 2, b = 8 i oryginał liczba wynosiła 28
Suma cyfr w dwucyfrowej liczbie wynosi 9. Jeśli cyfry są odwrócone, nowa liczba będzie o 9 mniejsza niż liczba oryginalna. Jaki jest oryginalny numer?
54 Ponieważ po odwróceniu pozycji s cyfr dwucyfrowej liczba nowo utworzona wynosi 9 mniej, cyfra miejsca 10 liczby orinalnej jest większa niż cyfra miejsca jednostki. Niech cyfra miejsca 10 będzie wynosić x, a cyfra miejsca jednostki będzie = 9-x (ponieważ ich suma wynosi 9). Tak więc oryginalny numer = 10x + 9-x = 9x + 9 Po odwróceniu liczba mew wynosi 10 (9-x) + x = 90-9x Według podanego warunku 9x + 9-90 + 9x = 9 => 18x = 90 => x = 90/8 = 5 Tak więc oryginalna liczba9x + 9 = 9xx5 + 9 = 54
Suma cyfr dwucyfrowej liczby wynosi 10. Jeśli cyfry są odwrócone, tworzony jest nowy numer. Nowy numer jest o jeden mniejszy niż dwukrotność oryginalnego numeru. Jak znaleźć oryginalny numer?
Oryginalna liczba wynosiła 37 Niech m i n będą odpowiednio pierwszą i drugą cyfrą oryginalnej liczby. Powiedziano nam, że: m + n = 10 -> n = 10-m [A] Teraz. aby utworzyć nowy numer, musimy odwrócić cyfry. Ponieważ możemy założyć, że obie liczby są dziesiętne, wartością oryginalnego numeru jest 10xxm + n [B], a nowa liczba to: 10xxn + m [C] Powiedziano nam również, że nowa liczba jest dwa razy większa od pierwotnej liczby minus 1 Łącząc [B] i [C] -> 10n + m = 2 (10 m + n) -1 [D] Zastępując [A] w [D] -> 10 (10 m) + m = 20 m +2 (10 -m) -1 100-10m + m = 20m + 20-2m-1 100-9m = 18m + 19 27m = 81 m = 3 Ponieważ