Odpowiedź:
Wyjaśnienie:
Założenie: To jest linia cieśniny, a (-2, -3) jest pierwszym punktem, ponieważ jest wymieniony jako pierwszy.
Nachylenie jest zmianą w górę / w dół dla każdej danej zmiany.
Pozwolić:
Wartość 0 jako licznik oznacza, że nie ma zmiany w pionie, ale jest zmiana na osi x.
Patrzymy na oba punkty, które obserwujemy
Jakie jest równanie linii zawierającej (4, -2) i równoległe do linii zawierającej (-1.4) i (2 3)?
Y = 1 / 3x-2/3 • kolor (biały) (x) „linie równoległe mają równe nachylenia” ”oblicz nachylenie (m) linii przechodzącej przez„ (-1,4) ”i„ (2,3 ) „przy użyciu koloru„ kolor (niebieski) ”kolor gradientu (czerwony) (pasek (kolor ul (| kolor (biały) (2/2) (czarny) (m = (y_2-y_1) / (x_2-x_1) ) kolor (biały) (2/2) |))) „let” (x_1, y_1) = (- 1,4) ”i„ (x_2, y_2) = (2,3) rArrm = (3-4) / (2 - (- 1)) = (- 1) / 3-1 / 3 "wyrażanie równania w" kolorze (niebieski) "forma punkt-nachylenie" • kolor (biały) (x) y-y_1 = m ( x-x_ 1) ”z„ m = -1 / 3 ”i„ (x_1, y_1) = (4, -2) y - (- 2) = - 1/3 (x-4) rArry + 2 = -
Jakie jest nachylenie linii zawierającej punkty (5, 3) i (7, 3)?
M = 0 to linia pozioma. Nachylenie jest zdefiniowane jako m = (Delta y) / (Delta x) = (y_2-y_1) / (x_2-x_1) m = (3-3) / (7-5) = 0/2 = 0 Widzimy, że wartości y 2 punktów są takie same. Wskazuje to, że linia jest pozioma, ponieważ nie ma zmian w wartościach y. Potwierdzają to obliczenia, które pokazują m = 0
Jakie jest nachylenie linii zawierającej punkty (2,6) i (-3, -4)?
Nachylenie wynosi m = -2 Nachylenie linii jest określone przez zmianę y w stosunku do zmiany w x. (Deltay) / (Deltax) m = (y_2-y_1) / (x_2-x_1) Korzystanie z punktów (2,6) i (-3, -4) x_1 = 2 y_1 = 6 x_2 = -3 y_2 = -4 m = (6 - (- 4)) / ((- 3) -2) m = (6 + 4) / (- 3-2) m = (10) / (- 5) m = -2