Odpowiedź:
Wyjaśnienie:
Wiemy, że odległość między dwoma punktami P (x1, y1) i Q (x2, y2) jest podana przez PQ =
Najpierw musimy obliczyć odległość między (9,2) (2,3); (2,3) (4,1) i (4,1) (9,2), aby uzyskać długości boków trójkątów.
Stąd będą długości
i
Teraz obwód trójkąta jest
Stosunek jednej strony trójkąta ABC do odpowiedniej strony podobnego trójkąta DEF wynosi 3: 5. Jeśli obwód trójkąta DEF wynosi 48 cali, jaki jest obwód trójkąta ABC?
„Obwód” trójkąta ABC = 28,8 Ponieważ trójkąt ABC ~ trójkąt DEF to wtedy („strona„ ABC ”) / („ odpowiednia strona „DEF” = 3/5 kolor (biały) („XXX”) rArr („obwód „ABC” / („obwód„ DEF ”) = 3/5, a ponieważ„ obwód ”DEF = 48 mamy kolor (biały) („ XXX ”) („ obwód „ABC”) / 48 = 3/5 rArrcolor ( biały) („XXX”) „obwód” ABC = (3xx48) /5=144/5=28.8
Dwa rogi trójkąta mają kąty (2 pi) / 3 i (pi) / 4. Jeśli jedna strona trójkąta ma długość 12, jaki jest najdłuższy możliwy obwód trójkąta?
Najdłuższy możliwy obwód wynosi 12 + 40,155 + 32,786 = 84,941. Ponieważ dwa kąty wynoszą (2pi) / 3 i pi / 4, trzeci kąt to pi-pi / 8-pi / 6 = (12pi-8pi-3pi) / 24- = pi / 12. Dla najdłuższej strony obwodu o długości 12, powiedzmy a, musi być przeciwny najmniejszy kąt pi / 12, a następnie za pomocą wzoru sinusowego pozostałe dwie strony będą wynosić 12 / (sin (pi / 12)) = b / (sin ((2pi) / 3)) = c / (sin (pi / 4)) Stąd b = (12sin ((2pi) / 3)) / (sin (pi / 12)) = (12xx0.866) /0.2588=40.155 i c = ( 12xxsin (pi / 4)) / (sin (pi / 12)) = (12xx0.7071) / 0,2588=32.786 Stąd najdłuższy możliwy obwód wynosi 12 + 40.155 + 32
Dwa rogi trójkąta mają kąty (2 pi) / 3 i (pi) / 4. Jeśli jedna strona trójkąta ma długość 4, jaki jest najdłuższy możliwy obwód trójkąta?
P_max = 28,31 jednostek Problem daje dwa z trzech kątów w dowolnym trójkącie. Ponieważ suma kątów w trójkącie musi sumować się do 180 stopni, lub pi radianów, możemy znaleźć trzeci kąt: (2pi) / 3 + pi / 4 + x = pi x = pi- (2pi) / 3- pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 Narysujmy trójkąt: Problem stwierdza, że jeden z boków trójkąta ma długość 4, ale nie określa strony. Jednak w każdym danym trójkącie prawdą jest, że najmniejszy bok będzie przeciwny od najmniejszego kąta. Jeśli chcemy zmaksymalizować obwód, powinniśmy wykonać bok o długości 4 po przeci