Odpowiedź:
Wyjaśnienie:
Dany:
Rozwiń kwadrat:
Odejmować
Czynnik:
Odpowiedź:
Wyjaśnienie:
Rozszerzanie
Uproszczenie
Faktoring
Jaka jest właściwa opcja z danego pytania? ps - dostałem 98 jako odpowiedź, ale to nie jest poprawne (? idk może podana odpowiedź z tyłu jest błędna, możesz także zobaczyć i sprawdzić moje rozwiązanie, załączyłem rozwiązanie poniżej pytania)
98 to poprawna odpowiedź.Biorąc pod uwagę: 4x ^ 3-7x ^ 2 + 1 = 0 Dzielimy przez 4 znajdziemy: x ^ 3-7 / 4x ^ 2 + 0x + 1/4 = (x-alfa) (x-beta) (x-gamma) = x ^ 3- (alfa + beta + gamma) x ^ 2 + (alfabeta + betagamma + gammaalpha) x-alfabetagamma Tak: {(alfa + beta + gamma = 7/4), (alfabeta + betagamma + gammaalpha = 0) , (alphabetagamma = -1/4):} Tak: 49/16 = (7/4) ^ 2-2 (0) kolor (biały) (49/16) = (alfa + beta + gamma) ^ 2-2 (alfabeta + betagamma + gammaalpha) kolor (biały) (49/16) = alfa ^ 2 + beta ^ 2 + gamma ^ 2 i: 7/8 = 0 - 2 (-1/4) (7/4) kolor ( biały) (7/8) = (alfabeta + betagamma + gammaalpha) ^ 2-2 alfabetagamma (alf
Jeśli odpowiedź jest opisana, jeśli odpowiedź została zaktualizowana przez innego użytkownika, czy oznacza to, że opisana ostateczna odpowiedź jest przyznawana wszystkim uczestnikom?
Tak. Ponieważ zaktualizowali problem, dzięki czemu obaj autorzy otrzymali kredyt. Mam nadzieję, że to pomogło!
Uprość racjonalne wyrażenie. Podać wszelkie ograniczenia dotyczące zmiennej? Sprawdź moją odpowiedź i wyjaśnij, w jaki sposób otrzymuję odpowiedź. Wiem, jak zrobić ograniczenia, to ostateczna odpowiedź, o której jestem zdezorientowany
((8x + 26) / ((x + 4) (x-4) (x + 3))) ograniczenia: -4,4, -3 (6 / (x ^ 2-16)) - (2 / ( x ^ 2-x-12)) Faktoring dolnych części: = (6 / ((x + 4) (x-4))) - (2 / ((x-4) (x + 3))) Pomnóż przez ((x + 3) / (x + 3)) i prawo przez ((x + 4) / (x + 4)) (wspólne denomanatory) = (6 (x + 3)) / ((x + 4) ( x-4) (x + 3)) - (2 (x + 4)) / ((x-4) (x + 3) (x + 4)) Co ułatwia: ((4x + 10) / (( x + 4) (x-4) (x + 3))) ... w każdym razie, ograniczenia wyglądają dobrze. Widzę, że zadałeś to pytanie trochę temu, oto moja odpowiedź. Jeśli potrzebujesz więcej pomocy, nie krępuj się zapytać :)