Odpowiedź:
Odpowiedź to
Wyjaśnienie:
Projekcja wektorowa
Produkt dot
Moduł
Projekcja wektorowa jest
Jaka jest projekcja <0, 1, 3> na <0, 4, 4>?
Rzut wektorowy jest <0,2,2>, projekcja skalarna to 2sqrt2. Zobacz poniżej. Biorąc pod uwagę veca = <0,1,3> i vecb = <0,4,4>, możemy znaleźć proj_ (vecb) veca, projekcję wektorową veca na vecb przy użyciu następującego wzoru: proj_ (vecb) veca = (( veca * vecb) / (| vecb |)) vecb / | vecb | Oznacza to, że iloczyn punktowy dwóch wektorów podzielony przez wielkość vecb pomnożony przez vecb podzielony przez jego wielkość. Druga wielkość jest wielkością wektorową, ponieważ dzielimy wektor przez skalar. Zauważ, że dzielimy vecb przez jego wielkość, aby uzyskać wektor jednostkowy (wektor o wielkości 1)
Jaka jest projekcja <3,1,5> na <2,3,1>?
Projekcja wektorowa jest = <2, 3, 1> Projekcja wektorowa vecb na veca to proj_ (veca) vecb = (veca.vecb) / (|| veca ||) ^ 2veca veca = <2,3,1> vecb = <3, 1,5> Produkt dot to veca.vecb = <3,1,5>. <2,3,1> = (3) * (2) + (1) * (3) + (5) * (1) = 6 + 3 + 5 = 14 Moduł veca = = || veca || = || <2,3,1> || = sqrt ((2) ^ 2 + (3) ^ 2 + (1) ^ 2) = sqrt14 Dlatego proj_ (veca) vecb = 14/14 <2, 3,1>
Jaka jest projekcja (32i-38j-12k) na (18i -30j -12k)?
Vec c = <24,47i, -40,79j, -16,32k> vec a = <32i, -38j, -12k> vec b = <18i, -30j, -12k> vec a * vec b = 18 * 32 + 38 * 30 + 12 * 12 = vec a * vec b = 576 + 1140 + 144 = 1860 | b | = sqrt (18 ^ 2 + 30 ^ 2 + 12 ^ 2) | b | = sqrt (324 + 900 +144) | b | = sqrt1368 vec c = (vec a * vec b) / (| b | * | b |) * vec b vec c = 1860 / (sqrt 1368 * sqrt 1368) <18i, -30j, - 12k> vec c = 1860/1368 <18i, -30j, -12k> vec c = <(1860 * 18i) / 1368, (-1860 * 30j) / 1368, (- 1860 * 12k) / 1368> vec c = <24,47i, -40,79j, -16,32k>