Odpowiedź:
Wyjaśnienie:
Aby znaleźć okres funkcji, możemy wykorzystać fakt, że okres jest wyrażony jako
W tym przypadku mamy
Poniżej znajduje się krzywa rozpadu dla bizmutu-210. Jaki jest okres półtrwania radioizotopu? Jaki procent izotopu pozostaje po 20 dniach? Ile okresów półtrwania minęło po 25 dniach? Ile dni minie, podczas gdy 32 gramy spadną do 8 gramów?
Zobacz poniżej Po pierwsze, aby znaleźć okres półtrwania z krzywej rozpadu, musisz narysować poziomą linię w poprzek połowy początkowej aktywności (lub masy radioizotopu), a następnie narysować pionową linię w dół od tego punktu do osi czasu. W tym przypadku czas na połowę masy radioizotopu wynosi 5 dni, więc jest to okres półtrwania. Po 20 dniach zauważ, że pozostało tylko 6,25 grama. To po prostu 6,25% pierwotnej masy. Opracowaliśmy w części i), że okres półtrwania wynosi 5 dni, więc po 25 dniach minie 25/5 lub 5 okresów półtrwania. Wreszcie, w części iv), powiedziano nam, że zaczynamy od 32
Jaki jest okres i podstawowy okres y (x) = sin (2x) + cos (4x)?
Y (x) jest sumą dwóch funkcji trignometrycznych. Okres grzechu 2x wynosiłby (2pi) / 2, czyli pi lub 180 stopni. Okres cos4x wynosiłby (2pi) / 4, czyli pi / 2 lub 90 stopni. Znajdź LCM 180 i 90. Byłoby to 180. Stąd okres danej funkcji byłby pi
Jaki jest okres funkcji y = -2 cos (4x-pi) -5?
Pi / 2 W równaniu sinusoidalnym y = a cos (bx + c) + d, amplituda funkcji będzie równa | a |, okres będzie równy (2pi) / b, przesunięcie fazy będzie równe -c / b, a przesunięcie pionowe będzie równe d. Więc gdy b = 4, okres będzie wynosił pi / 2, ponieważ (2pi) / 4 = pi / 2.