Odpowiedź:
Wyjaśnienie:
Powinien napisać to pytanie wyraźniej. Odkąd zastępujemy
Jeśli jednak równanie zostało napisane w ten sposób, co mogłoby być bardziej prawdopodobne:
twoja odpowiedź byłaby
Niech veca = <- 2,3> i vecb = <- 5, k>. Znajdź k, aby veca i vecb były ortogonalne. Znajdź k, aby a i b były ortogonalne?
Vec {a} quad "i" quad vec {b} quad "będzie dokładnie ortogonalny, gdy:" qquad qquad qquad qquad qquad qquad qquad qquad quad k = 10 / 3. # "Przypomnij sobie, że dla dwóch wektorów:" quad vec {a}, vec {b} quad "mamy:" quad vec {a} quad "i" quad vec {b} quad quad " są ortogonalne "quad qquad hArr quad quad vec {a} cdot vec {b} = 0." Tak: "quad <-2, 3> quad" i "quad <-5, k> quad quad "są ortogonalne" qquad quad hArr quad quad <-2, 3> cdot <-5, k> 0 0 quad qquad hArr qquad qquad qquad (-2 ) (-5) + (3) (k)
Niech P (x_1, y_1) będzie punktem i niech l będzie linią z równaniem ax + o + c = 0.Pokaż odległość d od P-> l jest podawana przez: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? Znajdź odległość d punktu P (6,7) od linii l z równaniem 3x + 4y = 11?
D = 7 Niech l-> a x + b y + c = 0 i p_1 = (x_1, y_1) punkt nie na l. Załóżmy, że b ne 0 i wywołanie d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 po zastąpieniu y = - (a x + c) / b na d ^ 2 mamy d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. Następnym krokiem jest znalezienie minimum d ^ 2 względem x, więc znajdziemy x takie, że d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 )) / b = 0. To miejsce dla x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Teraz, zastępując tę wartość d ^ 2, otrzymujemy d ^ 2 = (c + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) więc d = (c + a x_1 + b y_1) / sqrt (a ^ 2 + b ^ 2) Teraz podane l-
Niech vec (x) będzie wektorem, takim, że vec (x) = ( 1, 1), „i niech” R (θ) = [(costheta, -sintheta), (sintheta, costheta)], czyli Rotacja Operator. Dla theta = 3 / 4pi znajdź vec (y) = R (theta) vec (x)? Utwórz szkic pokazujący x, y i θ?
Okazuje się, że jest to obrót w lewo. Czy wiesz, o ile stopni? Niech T: RR ^ 2 | -> RR ^ 2 będzie transformacją liniową, gdzie T (vecx) = R (theta) vecx, R (theta) = [(costheta, -sintheta), (sintheta, costheta)], vecx = << -1,1 >>. Zauważ, że ta transformacja była reprezentowana jako macierz transformacji R (theta). Oznacza to, że ponieważ R jest macierzą rotacji, która reprezentuje transformację rotacyjną, możemy pomnożyć R przez vecx, aby dokonać tej transformacji. [(costheta, -sintheta), (sintheta, costheta)] xx << -1,1 >> W przypadku macierzy MxxK i KxxN wynikiem jest macierz kolor&