Czym jest forma wierzchołka y = 5x ^ 2-30x + 49?

Czym jest forma wierzchołka y = 5x ^ 2-30x + 49?
Anonim

Odpowiedź:

Zobacz proces rozwiązania poniżej:

Wyjaśnienie:

Aby przekonwertować kwadrat z y = ax ^ 2 + bx + c formularz do postaci wierzchołka, y = a (x - kolor (czerwony) (h)) ^ 2+ kolor (niebieski) (k) , używasz procesu wypełniania kwadratu.

Po pierwsze, musimy odizolować x warunki:

y - kolor (czerwony) (49) = 5x ^ 2 - 30x + 49 - kolor (czerwony) (49)

y - 49 = 5x ^ 2 - 30x

Potrzebujemy wiodącego współczynnika 1 do wypełnienia kwadratu, więc weź pod uwagę współczynnik wiodący prądu równy 2.

y - 49 = 5 (x ^ 2 - 6x)

Następnie musimy dodać prawidłową liczbę po obu stronach równania, aby utworzyć idealny kwadrat. Ponieważ jednak numer zostanie umieszczony w nawiasie po prawej stronie, musimy to uwzględnić 2 po lewej stronie równania. Jest to współczynnik, który uwzględniliśmy w poprzednim kroku.

y - 49 + (5 *?) = 5 (x ^ 2 - 6x +?) <- Wskazówka: 6/2 = 3; 3 * 3 = 9

y - 49 + (5 * 9) = 5 (x ^ 2 - 6x + 9)

y - 49 + 45 = 5 (x ^ 2 - 6x + 9)

y - 4 = 5 (x ^ 2 - 6x + 9)

Następnie musimy utworzyć kwadrat po prawej stronie równania:

y - 4 = 5 (x - 3) ^ 2

Teraz izoluj y semestr:

y - 4 + kolor (niebieski) (4) = 5 (x - 3) ^ 2 + kolor (niebieski) (4)

y - 0 = 5 (x - 3) ^ 2 + kolor (niebieski) (4)

y - 0 = 5 (x - kolor (czerwony) (3)) ^ 2 + kolor (niebieski) (4)

Wierzchołek jest: (3, 4)

Odpowiedź:

y = 5 (x - 3) + 4

Wyjaśnienie:

y = 5x ^ 2 - 30x + 49

współrzędna x wierzchołka:

x = -b / (2a) = 30/10 = 3

współrzędna y wierzchołka:

y (3) = 5 (9) - 30 (3) + 49 = 4

Wierzchołek (3, 4)

Forma wierzchołka y:

y = 5 (x - 3) ^ 2 + 4