Odpowiedź:
Wyjaśnienie:
Niech najmniejsza liczba całkowita będzie
Więc mamy:
Dlatego najmniejsza liczba całkowita to
Suma trzech kolejnych liczb całkowitych wynosi 216. Jaka jest największa z trzech liczb całkowitych?
Największa liczba to 73 Niech pierwsza liczba całkowita będzie n Następnie n + (n + 1) + (n + 2) = 216 => 3n + 3 = 216 Odejmij 3 z obu stron 3n = 213 Podziel obie strony o 3 n = 71 Więc największa liczba -> n + 2 = 71 + 2 = 73
Suma trzech kolejnych liczb całkowitych wynosi -78. Jaka jest najmniejsza liczba całkowita?
Najmniejsza liczba całkowita to -27. (Pozostałe dwa to -26 i -25) Musimy najpierw zdefiniować trzy liczby za pomocą zmiennej, abyśmy mieli coś do pracy. Niech najmniejsza liczba to x Pozostałe liczby to wtedy x + 1, a x + 2 Ich suma wynosi -78, więc dodaj je wszystkie razem: x + (x + 1) + (x + 2) = -78 3x +3 = -78 3x = -78 -3 3x = -81 x = -27 Jest to najmniejsza liczba całkowita. liczby to -27, -26 i -25,
Znając wzór na sumę N liczb całkowitych a) jaka jest suma pierwszych N kolejnych liczb całkowitych kwadratowych, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma pierwszych N kolejnych liczb całkowitych sześcianu Sigma_ (k = 1) ^ N k ^ 3?
Dla S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Mamy sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rozwiązywanie dla sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tak sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /