Iloczyn dwóch kolejnych liczb całkowitych jest o 482 więcej niż następna liczba całkowita. Jaka jest największa z trzech liczb całkowitych?
Największa to 24 lub -20. Oba rozwiązania są ważne. Niech trzy liczby będą x, x + 1 i x + 2 Produkt pierwszych dwóch różni się od trzeciego o 482. x xx (x + 1) - (x + 2) = 482 x ^ 2 + x-x - 2 = 482 x ^ 2 = 484 x = + -sqrt484 x = + -22 Kontrola: 22 xx 23 - 24 = 482 -22 xx -21 - (-20) = 482 Oba rozwiązania są ważne.
Iloczyn dwóch kolejnych liczb całkowitych jest o 98 większy od następnej liczby całkowitej. Jaka jest największa z trzech liczb całkowitych?
Tak więc trzy liczby całkowite wynoszą 10, 11, 12 Niech 3 kolejne liczby całkowite będą (a-1), ai (a + 1) Dlatego a (a-1) = (a + 1) +98 lub ^ 2-a = a + 99 lub ^ 2-2a-99 = 0 lub a ^ 2-11a + 9a-99 = 0 lub a (a-11) +9 (a-11) = 0 lub (a-11) (+ 9) = 0 lub a-11 = 0 lub a = 11 a + 9 = 0 lub a = -9 Przyjmiemy tylko wartość dodatnią Więc a = 11 Więc trzy liczby całkowite wynoszą 10, 11, 12
Znając wzór na sumę N liczb całkowitych a) jaka jest suma pierwszych N kolejnych liczb całkowitych kwadratowych, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma pierwszych N kolejnych liczb całkowitych sześcianu Sigma_ (k = 1) ^ N k ^ 3?
Dla S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Mamy sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rozwiązywanie dla sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tak sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /