Stwórz tabelę prawdy twierdzenia ¬q [(pΛq) V ~ p]?

Stwórz tabelę prawdy twierdzenia ¬q [(pΛq) V ~ p]?
Anonim

Odpowiedź:

Zobacz poniżej.

Wyjaśnienie:

Dany: #not p -> (p ^^ q) vv ~ p #

Operatory logiczne:# "nie p:" nie p, ~ p; „i:” ^^; lub: vv #

Tabele logiczne, negacja:

#ul (| "" p | "" q | "" ~ p | "" ~ q |) #

# "" T | "" T | "" F | "" F | #

# "" T | "" F | "" F | "" T | #

# "" F | "" T | "" T | "" F | #

# "" F | "" F | "" T | "" T | #

Tabele logiczne i & lub:

#ul (| "" p | "" q | "" p ^^ q "" | "" qvvq "" |) #

# | "" T | "" T | "" T "" | "" T "" | #

# | "" T | "" F | "" F "" | "" T "" | #

# | "" F | "" T | "" F "" | "" T "" | #

# | "" F | "" F | "" F "" | "" F "" | #

Tabele logiczne, jeśli tak:

#ul (| "" p | "" q | "" p-> q "" |) #

# | "" T | "" T | "" T "" | #

# | "" T | "" F | "" F "" | #

# | "" F | "" T | "" T "" | #

# | "" F | "" F | "" T "" | #

Propozycja Given Logic część 1:

#ul (| "" p ^^ q "" | "" ~ p "" | "" (p ^^ q) vv ~ p |) #

# | "" T "" | "" F "" | "" T "" | #

# | "" F "" | "" F "" | "" F "" | #

# | "" F "" | "" T "" | "" T "" | #

# | "" F "" | "" T "" | "" T "" | #

Propozycja Given Logic część 2:

#ul (| "" ~ q "" | "" (p ^^ q) vv ~ p | "" ~ q -> (p ^^ q) vv ~ p |) #

# | "" F "" | "" T "" | "" T "" | #

# | "" T "" | "" F "" | "" F "" | #

# | "" F "" | "" T "" | "" T "" | #

# | "" T "" | "" T "" | "" T "" | #