Odpowiedź:
Standardową formą równania paraboli jest
Wyjaśnienie:
Tutaj directrix jest linią poziomą
Ponieważ ta linia jest prostopadła do osi symetrii, jest to zwykła parabola, gdzie
Teraz odległość punktu na paraboli od skupienia na
Odległość od ostrości wynosi
Stąd,
lub
lub
lub
lub
Jaka jest standardowa forma równania paraboli z naciskiem na (-13,7) i macierzą y = 6?
(x + 13) ^ 2 = 2 (y-13/2) Parabola to krzywa (miejsce punktu) taka, że jej odległość od stałego punktu (ogniska) jest równa jej odległości od linii stałej (bezpośredni) ). Zatem jeśli (x, y) jest dowolnym punktem na paraboli, to jego odległość od ogniska (-13,7) byłaby sqrt ((x + 13) ^ 2 + (y-7) ^ 2) Jego odległość od directrix byłoby (y-6) Zatem sqrt ((x + 13) ^ 2 + (y-7) ^ 2) = y-6 Kwadrat po obu stronach, aby mieć (x + 13) ^ 2 + y ^ 2-14y + 49 = y ^ 2 -12y +36 (x + 13) ^ 2 = 2y-13 (x + 13) ^ 2 = 2 (y-13/2) to wymagany standardowy formularz
Jaka jest standardowa forma równania paraboli z naciskiem na (-15,5) i linią y = -12?
Równanie paraboli wynosi y = 1/34 (x + 15) ^ 2-119 / 34 Punkt (x, y) na paraboli jest w równej odległości od linii głównej i ostrości. Dlatego y - (- 12) = sqrt ((x - (- 15)) ^ 2+ (y- (5)) ^ 2) y + 12 = sqrt ((x + 15) ^ 2 + (y-5 ) ^ 2) Wyrównanie i rozwinięcie (y-5) ^ 2 terminu i LHS (y + 12) ^ 2 = (x + 15) ^ 2 + (y-5) ^ 2 y ^ 2 + 24y + 144 = (x + 15) ^ 2 + y ^ 2-10y + 25 34y + 119 = (x + 15) ^ 2 y = 1/34 (x + 15) ^ 2-119 / 34 Równanie paraboli to y = 1/34 (x + 15) ^ 2-119 / 34 wykres {(y-1/34 (x + 15) ^ 2 + 119/34) ((x + 15) ^ 2 + (y-5) ^ 2 -0,2) (y + 12) = 0 [-12,46, 23,58, -3,17, 14,86]}
Jaka jest standardowa forma równania paraboli z naciskiem na (-1,7) i macierzą y = 3?
(x + 1) ^ 2 = 8 (y-5)> „dla dowolnego punktu” (x, y) „na paraboli” „odległość do punktu skupienia i reżyserii jest równa” „przy użyciu koloru” (niebieski) ” formuła odległości "• kolor (biały) (x) d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ^ 2)" let "(x_1, y_1) = (- 1,7)" i "( x_2, y_2) = (x, y) d = sqrt ((x + 1) ^ 2 + (y-7) ^ 2) = | y-3 | kolor (niebieski) „kwadrat po obu stronach” (x + 1) ^ 2 + (y-7) ^ 2 = (y-3) ^ 2 rArr (x + 1) ^ 2 = (y-3) ^ 2- ( y-7) ^ 2 kolor (biały) ((x + 1) ^ 2xxx) = anuluj (y ^ 2) -6y + 9 anuluj (-y ^ 2) + 14y-49 kolor (biały) (xxxxxxxx) = 8y- 40 rArr (x + 1) ^ 2 = 8 (y-5)