Jak sprawdzić ((csc ^ (3) x-cscxcot ^ (2) x)) / (cscx) = 1?

Jak sprawdzić ((csc ^ (3) x-cscxcot ^ (2) x)) / (cscx) = 1?
Anonim

Strategia, której użyłem, polega na napisaniu wszystkiego w kategoriach #grzech# i #sałata# używając tych tożsamości:

#color (biały) => cscx = 1 / sinx #

#color (biały) => cotx = cosx / sinx #

Użyłem także zmodyfikowanej wersji tożsamości pitagorejskiej:

#color (biały) => cos ^ 2x + sin ^ 2x = 1 #

# => sin ^ 2x = 1-cos ^ 2x #

Teraz jest prawdziwy problem:

# (csc ^ 3x-cscxcot ^ 2x) / (cscx) #

# ((cscx) ^ 3-cscx (cotx) ^ 2) / (1 / sinx) #

# ((1 / sinx) ^ 3-1 / sinx * (cosx / sinx) ^ 2) / (1 / sinx) #

# (1 / sin ^ 3x-1 / sinx * cos ^ 2x / sin ^ 2x) / (1 / sinx) #

# (1 / sin ^ 3x-cos ^ 2x / sin ^ 3x) / (1 / sinx) #

# ((1-cos ^ 2x) / sin ^ 3x) / (1 / sinx) #

# (sin ^ 2x / sin ^ 3x) / (1 / sinx) #

# (1 / sinx) / (1 / sinx) #

# 1 / sinx * sinx / 1 #

#1#

Mam nadzieję że to pomoże!

Odpowiedź:

Patrz poniżej.

Wyjaśnienie:

# LHS = (csc ^ 3x-cscx * cot ^ 2x) / cscx #

# = csc ^ 3x / cscx- (cscx * cot ^ 2x) / cscx #

# = csc ^ 2x-łóżeczko ^ 2x #

# = 1 / sin ^ 2x-cos ^ 2x / sin ^ 2x #

# = (1-cos ^ 2x) / sin ^ 2x #

# = sin ^ 2x / sin ^ 2x = 1 = RHS #