Odpowiedź:
Aby rozwiązać ten problem, musisz użyć formy wierzchołka równania paraboli, które jest
Wyjaśnienie:
Pierwszym krokiem jest zdefiniowanie zmiennych
Znamy jeden zestaw punktów na wykresie, więc
Następnie rozwiń wzór na
Aby utworzyć ogólną formułę paraboli, należy wprowadzić wartości dla
Więc równanie paraboli, która ma wierzchołek
Załóżmy, że parabola ma wierzchołek (4,7) i przechodzi przez punkt (-3,8). Jakie jest równanie paraboli w formie wierzchołka?
W rzeczywistości istnieją dwie parabole (formy wierzchołków), które spełniają twoje wymagania: y = 1/49 (x- 4) ^ 2 + 7 i x = -7 (y-7) ^ 2 + 4 Istnieją dwie formy wierzchołków: y = a (x- h) ^ 2 + k i x = a (yk) ^ 2 + h gdzie (h, k) jest wierzchołkiem, a wartość „a” można znaleźć, używając jednego innego punktu. Nie mamy żadnego powodu, aby wykluczyć jedną z form, dlatego podany wierzchołek zastępujemy obydwoma: y = a (x- 4) ^ 2 + 7 i x = a (y-7) ^ 2 + 4 Rozwiąż obie wartości a używając punktu (-3,8): 8 = a_1 (-3- 4) ^ 2 + 7 i -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 i - 7 = a_2 (1) ^ 2 a_1 = 1/49 i a_2 = -7 Ot
Jakie jest równanie paraboli, która ma wierzchołek (0, 0) i przechodzi przez punkt (-1, -64)?
F (x) = - 64x ^ 2 Jeśli wierzchołek jest na (0 | 0), f (x) = ax ^ 2 Teraz tylko podpiszemy punkt (-1, -64) -64 = a * (- 1) ^ 2 = aa = -64 f (x) = - 64x ^ 2
Jakie jest równanie paraboli, która ma wierzchołek w (0, 0) i przechodzi przez punkt (-1, -4)?
Y = -4x ^ 2> „równanie paraboli w” kolorze (niebieski) „forma wierzchołka” to. • kolor (biały) (x) y = a (xh) ^ 2 + k "gdzie" (h, k) "oznaczają współrzędne wierzchołka i" "jest mnożnikiem" "tutaj" (h, k) = (0,0) "w ten sposób" y = ax ^ 2 ", aby znaleźć substytut" (-1, -4) "do równania" -4 = ay = -4x ^ 2larrcolor (niebieski) "równanie paraboli" graph { -4x ^ 2 [-10, 10, -5, 5]}