Linia z równaniem y = mx + 6 ma nachylenie, m, takie, że m [-2,12]. Użyj interwału, aby opisać możliwe x przecięcia linii? Proszę wyjaśnić szczegółowo, jak uzyskać odpowiedź.

Linia z równaniem y = mx + 6 ma nachylenie, m, takie, że m [-2,12]. Użyj interwału, aby opisać możliwe x przecięcia linii? Proszę wyjaśnić szczegółowo, jak uzyskać odpowiedź.
Anonim

Odpowiedź:

#-1/2, 3#

Wyjaśnienie:

Rozważ wysokie i niskie wartości nachylenia, aby określić wysoką i niską wartość x-int. Następnie możemy określić odpowiedź jako interwał.

Wysoki:

Pozwolić # m = 12 #:

# y = 12x + 6 #

Chcemy # x # gdy # y = 0 #, więc

# 0 = 12x + 6 #

# 12x = -6 #

# x = -1 / 2 #

Niska:

Pozwolić # m = -2 #

Również:

# 0 = -2x + 6 #

# 2x = 6 #

# x = 3 #

Dlatego zakres x-int jest #-1/2# do #3#, włącznie.

Jest to sformalizowane w notacji interwałowej jako:

#-1/2, 3#

PS:

Notacja interwału:

# x, y # to wszystkie wartości z # x # do # y # włącznie

# (x, y) # to wszystkie wartości z # x # do # y #, Ekskluzywny.

# (x, y # to wszystkie wartości z # x # do # y # z pominięciem # x #, włącznie z # y #

„” oznacza włącznie ”,„ oznacza wyłączność.

Uwaga: # oo # jest zawsze ekskluzywny. więc #x> = 3 # jest # 3, oo) #