Odpowiedź:
Równanie linii CD jest
Wyjaśnienie:
Równanie linii o dwóch współrzędnych na linii jest podane za pomocą wzoru
Dany
Stąd równanie jest
Równanie linii CD jest
Linia n przechodzi przez punkty (6,5) i (0, 1). Jaki jest punkt przecięcia linii y, jeśli linia k jest prostopadła do linii n i przechodzi przez punkt (2,4)?
7 jest przecięciem y linii k Najpierw znajdźmy nachylenie linii n. (1-5) / (0-6) (-4) / - 6 2/3 = m Nachylenie linii n wynosi 2/3. Oznacza to, że nachylenie linii k, która jest prostopadła do linii n, jest ujemną odwrotnością 2/3 lub -3/2. Zatem równanie, które mamy do tej pory, jest: y = (- 3/2) x + b Aby obliczyć b lub punkt przecięcia y, wystarczy podłączyć (2,4) do równania. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Więc punkt przecięcia y wynosi 7
Linia przechodzi przez (8, 1) i (6, 4). Druga linia przechodzi przez (3, 5). Jaki jest inny punkt, w którym druga linia może przejść, jeśli jest równoległa do pierwszej linii?
(1,7) Więc najpierw musimy znaleźć wektor kierunkowy między (8,1) a (6,4) (6,4) - (8,1) = (- 2,3) Wiemy, że równanie wektorowe składa się z wektora pozycji i wektora kierunku. Wiemy, że (3,5) jest pozycją na równaniu wektorowym, więc możemy użyć tego jako naszego wektora pozycji i wiemy, że jest równoległy do drugiej linii, więc możemy użyć tego wektora kierunkowego (x, y) = (3, 4) + s (-2,3) Aby znaleźć inny punkt na linii, po prostu zamień dowolną liczbę na s, z wyjątkiem 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Więc (1,7) to kolejny kolejny punkt.
Linia przechodzi przez (4, 3) i (2, 5). Druga linia przechodzi przez (5, 6). Jaki jest inny punkt, w którym druga linia może przejść, jeśli jest równoległa do pierwszej linii?
(3,8) Najpierw musimy znaleźć wektor kierunkowy między (2,5) i (4,3) (2,5) - (4,3) = (- 2,2) Wiemy, że równanie wektorowe składa się z wektora pozycji i wektora kierunku. Wiemy, że (5,6) jest pozycją na równaniu wektorowym, więc możemy użyć tego jako naszego wektora pozycji i wiemy, że jest równoległy do drugiej linii, więc możemy użyć tego wektora kierunkowego (x, y) = (5, 6) + s (-2,2) Aby znaleźć inny punkt na linii, po prostu zamień dowolną liczbę na s, z wyjątkiem 0, więc wybierz 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Tak więc (3,8) to kolejny kolejny punkt.