Odpowiedź:
Reszta to #=0#
Wyjaśnienie:
Wykonaj to za pomocą arytmetycznej kongruencji modulo #7#
#"pierwsza część"#
#111 67#
#333 18 47#
#4^2 27#
#4^3 17#
W związku z tym, #333^444 4^4447 (4^3)^148 1^148 17#
#"druga część"#
#111 67#
#444 24 37#
#3^2 27#
#3^3 -17#
W związku z tym, #444^333 (3)^3337 ((3)^111)^3 (-1)^3 -17#
Wreszcie, #333^444+444^333 1-1 07#
Odpowiedź:
# 333 ^ 444 + 444 ^ 333 = 0 (Mod 7) #
Wyjaśnienie:
# 333 = 4 (Mod 7) #
# 333 ^ 2 = 4 ^ 2 = 2 (Mod 7) #
# 333 ^ 3 = 4 ^ 3 = 1 (Mod 7) #
Spowodowany # 444 = 0 (Mod 3) #, # 333 ^ 444 = 3 ^ 0 = 1 (Mod 7) #
# 444 = 3 (Mod 7) #
# 444 ^ 2 = 3 ^ 2 = 2 (Mod 7) #
# 444 ^ 3 = 3 ^ 3 = 6 (Mod 7) #
# 444 ^ 4 = 3 ^ 4 = 4 (Mod 7) #
# 444 ^ 5 = 3 ^ 5 = 5 (Mod 7) #
# 444 ^ 4 = 3 ^ 6 = 1 (Mod 7) #
Spowodowany # 333 = 3 (Mod 6) #, # 444 ^ 333 = 3 ^ 3 = 6 (Mod 7) #
A zatem, # 333 ^ 444 + 444 ^ 333 = 1 + 6 = 7 = 0 (Mod 7) #