Czym jest wyróżnik x ^ 2 + x + 1 = 0 i co to oznacza?

Czym jest wyróżnik x ^ 2 + x + 1 = 0 i co to oznacza?
Anonim

Odpowiedź:

Wyróżnikiem jest -3. Mówi ci, że nie ma prawdziwych korzeni, ale do równania istnieją dwa złożone korzenie.

Wyjaśnienie:

Jeśli masz równanie kwadratowe formularza

# ax ^ 2 + bx + c = 0 #

Rozwiązaniem jest

#x = (-b ± sqrt (b ^ 2-4ac)) / (2a) #

Wyróżniający #Δ# jest # b ^ 2 -4ac #.

Wyróżniający „rozróżnia” naturę korzeni.

Istnieją trzy możliwości.

  • Jeśli #Δ > 0#, tam są dwa oddzielne prawdziwe korzenie.
  • Jeśli #Δ = 0#, tam są dwa identyczne prawdziwe korzenie.
  • Jeśli #Δ <0#, tam są Nie prawdziwe korzenie, ale są dwa złożone korzenie.

Twoje równanie jest

# x ^ 2 + x +1 = 0 #

# Δ = b ^ 2 - 4ac = 1 ^ 2 - 4 × 1 × 1 = 1 - 4 = -3 #

To mówi ci, że nie ma prawdziwych korzeni, ale są dwa złożone korzenie.

Możemy to zobaczyć, jeśli rozwiążemy równanie.

# x ^ 2 + x +1 = 0 #

#x = (-b ± sqrt (b ^ 2-4ac)) / (2a) = (-1 ± sqrt (1 ^ 2 - 4 × 1 × 1)) / (2 × 1) = (-1 ± sqrt (1-4)) / 2 = (-1 ± sqrt (-3)) / 2 = 1/2 (-1 ± isqrt3) = -1 / 2 (1 ± isqrt3) #

#x = -1 / 2 (1+ isqrt3) # i #x = -1/2 (1- isqrt3) #