Odpowiedź:
Maksymalny:
Minimum:
Wyjaśnienie:
Alternatywnym podejściem jest przekształcenie funkcji w równanie kwadratowe. Lubię to:
Pozwolić
Przypomnijmy, że dla wszystkich prawdziwych korzeni tego równania wyróżnik jest dodatni lub zerowy
Więc mamy,
Łatwo to rozpoznać
Stąd,
To pokazuje, że maksimum jest
Funkcja f jest zdefiniowana przez f: x = 6x-x ^ 2-5 Znajdź zbiór wartości x, dla których f (x) <3 Znalazłem wartości x, które są 2 i 4 Ale nie wiem, w którym kierunku znak nierówności powinien być?
X <2 "lub" x> 4> "wymagają" f (x) <3 "wyrażenia" f (x) <0 rArr-x ^ 2 + 6x-5 <3 rArr-x ^ 2 + 6x-8 <0larrcolor (niebieski) „czynnik kwadratowy” rArr- (x ^ 2-6x + 8) <0 ”współczynniki + 8, które sumują się do - 6 to - 2 i - 4” rArr- (x-2) (x-4 ) <0 „rozwiązać” (x-2) (x-4) = 0 x-2 = 0rArrx = 2 x-4 = 0rArrx = 4 rArrx = 2, x = 4larrcolor (niebieski) „są przecięciami x” współczynnik „x ^ 2” termin „<0rArrnnn rArrx <2” lub „x> 4 x in (-oo, 2) uu (4, oo) larrcolor (niebieski)„ w notacji interwałowej ”wykres {-x ^ 2 + 6x-8 [-10, 10, -5, 5]}
Wykres funkcji f (x) = (x + 2) (x + 6) pokazano poniżej. Które stwierdzenie o funkcji jest prawdziwe? Funkcja jest dodatnia dla wszystkich rzeczywistych wartości x, gdzie x> –4. Funkcja jest ujemna dla wszystkich rzeczywistych wartości x, gdzie –6 <x <–2.
Funkcja jest ujemna dla wszystkich rzeczywistych wartości x, gdzie –6 <x <–2.
Suma pięciu liczb to -1/4. Liczby obejmują dwie pary przeciwieństw. Iloraz dwóch wartości wynosi 2. Iloraz dwóch różnych wartości wynosi -3/4 Jakie są wartości?
Jeśli para, której iloraz wynosi 2, jest unikalna, istnieją cztery możliwości ... Powiedziano nam, że pięć liczb zawiera dwie pary przeciwieństw, więc możemy je nazwać: a, -a, b, -b, c i bez utrata ogólności niech a> = 0 i b> = 0. Suma liczb wynosi -1/4, a więc: -1/4 = kolor (czerwony) (anuluj (kolor (czarny) (a))) + ( kolor (czerwony) (anuluj (kolor (czarny) (- a)))) + kolor (czerwony) (anuluj (kolor (czarny) (b))) + (kolor (czerwony) (anuluj (kolor (czarny) (- b)))) + c = c Powiedziano nam, że iloraz dwóch wartości wynosi 2. Zinterpretujmy to stwierdzenie, aby oznaczyć, że wśród pięciu liczb wys