Odpowiedź:
Wyjaśnienie:
lub
Średnia dwóch wyników testu Pauli musi wynosić 80 lub więcej, aby uzyskać przynajmniej B w klasie. Dostała 72 w pierwszym teście. Jakie oceny może uzyskać w drugim teście, aby uzyskać co najmniej B w klasie?
88 Użyję średniej formuły, aby znaleźć odpowiedź na to pytanie. „średnia” = („suma stopni”) / („liczba stopni”) Miała test z wynikiem 72 i test z nieznanym wynikiem x, a wiemy, że jej średnia musi wynosić co najmniej 80 więc jest to formuła wynikowa: 80 = (72 + x) / (2) Pomnóż obie strony przez 2 i rozwiń: 80 xx 2 = (72 + x) / anuluj2 xx anuluj2 160 = 72 + x 88 = x Więc ocena, którą może wykonać na drugim teście, aby uzyskać co najmniej „B”, musiałaby wynosić 88%.
Kelly miała 85, 83, 92, 88 i 69 lat w pierwszych pięciu testach matematycznych. Aby uzyskać B, potrzebuje średnio 85. Jaki wynik musi uzyskać podczas ostatniego testu, aby uzyskać B?
Dla średnio 85 w sześciu testach potrzebuje łącznie 6xx85 = 510 Oceny, które już dodała do 417, więc potrzebuje 510-417 = 93 na ostatni test.
Uprość racjonalne wyrażenie. Podać wszelkie ograniczenia dotyczące zmiennej? Sprawdź moją odpowiedź i wyjaśnij, w jaki sposób otrzymuję odpowiedź. Wiem, jak zrobić ograniczenia, to ostateczna odpowiedź, o której jestem zdezorientowany
((8x + 26) / ((x + 4) (x-4) (x + 3))) ograniczenia: -4,4, -3 (6 / (x ^ 2-16)) - (2 / ( x ^ 2-x-12)) Faktoring dolnych części: = (6 / ((x + 4) (x-4))) - (2 / ((x-4) (x + 3))) Pomnóż przez ((x + 3) / (x + 3)) i prawo przez ((x + 4) / (x + 4)) (wspólne denomanatory) = (6 (x + 3)) / ((x + 4) ( x-4) (x + 3)) - (2 (x + 4)) / ((x-4) (x + 3) (x + 4)) Co ułatwia: ((4x + 10) / (( x + 4) (x-4) (x + 3))) ... w każdym razie, ograniczenia wyglądają dobrze. Widzę, że zadałeś to pytanie trochę temu, oto moja odpowiedź. Jeśli potrzebujesz więcej pomocy, nie krępuj się zapytać :)