Odpowiedź:
Zobacz proces rozwiązania poniżej:
Wyjaśnienie:
Po pierwsze, możemy określić nachylenie linii. Nachylenie można znaleźć za pomocą wzoru:
Gdzie
Zastępowanie wartości z punktów problemu daje:
Możemy teraz użyć formuły nachylenia punktu do napisania równania dla linii. Punktowo-nachylona forma równania liniowego to:
Gdzie
Zastępując obliczone nachylenie i drugi punkt daje:
Standardową formą równania liniowego jest:
Gdzie, jeśli w ogóle możliwe,
Możemy teraz przekonwertować nasze równanie do standardowego formularza w następujący sposób:
Lub
Jakie jest równanie linii w standardowej postaci, która przechodzi przez punkt (-1, 4) i jest równoległa do linii y = 2x - 3?
Kolor (czerwony) (y = 2x + 6) „obie linie mają takie samo nachylenie” „dla linii y =” kolor (niebieski) (2) x-3 ”„ nachylenie = 2 ”„ dla czerwonej linii ” nachylenie = 2 = (y-4) / (x + 1) 2x + 2 = y-4 y = 2x + 2 + 4 kolor (czerwony) (y = 2x + 6)
Jakie jest równanie linii, która przechodzi przez początek i jest prostopadłe do linii, która przechodzi przez następujące punkty: (3,7), (5,8)?
Y = -2x Przede wszystkim musimy znaleźć gradient linii przechodzącej przez (3,7) i (5,8) „gradient” = (8-7) / (5-3) „gradient” = 1 / 2 Skoro nowa linia jest PERPENDICULARNA do linii przechodzącej przez 2 punkty, możemy użyć tego równania m_1m_2 = -1, gdzie gradienty dwóch różnych linii po pomnożeniu powinny być równe -1, jeśli linie są prostopadłe do siebie, tj. pod właściwymi kątami . stąd twoja nowa linia będzie miała gradient 1 / 2m_2 = -1 m_2 = -2 Teraz możemy użyć formuły gradientu punktu, aby znaleźć twoje równanie linii y-0 = -2 (x-0) y = - 2x
Jakie jest równanie linii, która przechodzi przez początek i jest prostopadłe do linii, która przechodzi przez następujące punkty: (9,4), (3,8)?
Patrz poniżej Nachylenie linii przechodzącej przez (9,4) i (3,8) = (4-8) / (9-3) -2/3, a więc dowolna linia prostopadła do przechodzącej linii (9,4 ) i (3,8) będą miały nachylenie (m) = 3/2 Stąd mamy znaleźć równanie linii przechodzącej przez (0,0) i mając nachylenie = 3/2 wymagane równanie jest (y-0 ) = 3/2 (x-0) ie2y-3x = 0