Proszę rozwiązać równanie?

Proszę rozwiązać równanie?
Anonim

Odpowiedź:

# x = (npi) / 5, (2n + 1) pi / 2 # Gdzie # nrarrZ #

Wyjaśnienie:

Tutaj, # cosx * cos2x * sin3x = (sin2x) / 4 #

# rarr2 * sin3x 2cos2x * cosx = sin2x #

# rarr2 * sin3x cos (2x + x) + cos (2x-x) = sin2x #

# rarr2sin3x cos3x + cosx = sin2x #

# rarr2sin3x * cos3x + 2sin3x * cosx = sin2x #

# rarrsin6x + sin (3x + x) + sin (3x-x) = sin2x #

# rarrsin6x + sin4x = sin2x-sin2x = 0 #

# rarrsin6x + sin4x = 0 #

# rarr2sin ((6x + 4x) / 2) * cos ((6x-4x) / 2) = 0 #

# rarrsin5x * cosx = 0 #

Zarówno, # sin5x = 0 #

# rarr5x = npi #

# rarrx = (npi) / 5 #

Lub, # cosx = 0 #

# x = (2n + 1) pi / 2 #

Stąd, # x = (npi) / 5, (2n + 1) pi / 2 # Gdzie # nrarrZ #