Odpowiedź:
Oblicz nachylenie najpierw za pomocą dwóch punktów, a następnie użyj jednego z punktów.
Wyjaśnienie:
Dany:
Oblicz nachylenie
Forma punkt-nachylenie:
Niech Bóg błogosławi … Mam nadzieję, że wyjaśnienie jest użyteczne.
Równanie linii wynosi -3y + 4x = 9. Jak napisać równanie linii równoległej do linii i przechodzącej przez punkt (-12,6)?
Y-6 = 4/3 (x + 12) Będziemy używać formy gradientu punktowego, ponieważ mamy już punkt, przez który przejdzie linia (-12,6), a słowo równoległe oznacza, że gradient dwóch linii musi być taki sam. aby znaleźć gradient linii równoległej, musimy znaleźć gradient linii, do której jest równoległy. Ta linia to -3y + 4x = 9, którą można uprościć na y = 4 / 3x-3. Daje nam to gradient 4/3 Teraz, aby zapisać równanie, które umieściliśmy w tej formule, y-y_1 = m (x-x_1), były (x_1, y_1) punktem, przez który przechodzą, a m jest gradientem.
Martha bawi się Lego. Ma po 300 sztuk każdego typu - 2 punkty, 4 punkty, 8 punktów. Niektóre cegły używane do tworzenia zombie. Używa 2 punktów, 4 punktów, 8 punktów w stosunku 3: 1: 2, gdy skończy dwa razy więcej niż 2 punkty w 2 punktach. Ile pozostało 8 punktów?
Pozostała liczba 8 spotów wynosi 225 Niech identyfikator spotu typu 2 będzie S_2 larr 300 na początku Niech identyfikator typu 4 spot będzie na początku S_4 larr300 Niech identyfikator spotu typu 8 to S_8larr 300 na początku Zombie -> S_2: S_4: S_8 -> 3: 2: 1 Pozostało: S_2: S_4: S_8 -> 1: 2 :? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Uwaga, że mamy: kolor (brązowy) („Jak zgadnąć”) zombiecolor (biały) („dd”) -> 3: 2: 1 pozostały (-> 1: 2 :?) kolor (biały) („ddddddd”) -> 4: 4 :? Ponieważ suma pionowa wszystkich różnych współczynników typów miała tę samą wartość, podejrzewam, że o
Jakie jest równanie linii przechodzącej przez (0, -1) i jest prostopadłe do linii przechodzącej przez następujące punkty: (8, -3), (1,0)?
7x-3y + 1 = 0 Nachylenie linii łączącej dwa punkty (x_1, y_1) i (x_2, y_2) jest podane przez (y_2-y_1) / (x_2-x_1) lub (y_1-y_2) / (x_1-x_2 ) Ponieważ punkty to (8, -3) i (1, 0), nachylenie linii łączącej je zostanie podane przez (0 - (- 3)) / (1-8) lub (3) / (- 7) tj. -3/7. Produkt nachylenia dwóch prostopadłych linii wynosi zawsze -1. Stąd nachylenie linii prostopadłej do niego będzie 7/3 i stąd równanie w postaci nachylenia można zapisać jako y = 7 / 3x + c Gdy przechodzi przez punkt (0, -1), umieszczając te wartości w powyższym równaniu, otrzymamy -1 = 7/3 * 0 + c lub c = 1 Stąd pożądane równanie bę