Jaka jest pochodna tej funkcji f (x) = sin (1 / x ^ 2)?

Jaka jest pochodna tej funkcji f (x) = sin (1 / x ^ 2)?
Anonim

Odpowiedź:

# (df (x)) / dx = (-2 cos (1 / x ^ 2)) / x ^ 3 #

Wyjaśnienie:

Jest to prosty problem z regułami łańcucha. Jest to trochę łatwiejsze, jeśli piszemy równanie jako:

#f (x) = sin (x ^ -2) #

To nam to przypomina # 1 / x ^ 2 # można rozróżnić w taki sam sposób jak każdy wielomian, upuszczając wykładnik i redukując go o jeden.

Zastosowanie reguły łańcucha wygląda następująco:

# d / dx sin (x ^ -2) = cos (x ^ -2) (d / dx x ^ -2) #

# = cos (x ^ -2) (- 2x ^ -3) #

# = (-2cos (1 / x ^ 2)) / x ^ 3 #