Jak znaleźć pochodną G (x) = (4-cos (x)) / (4 + cos (x))?

Jak znaleźć pochodną G (x) = (4-cos (x)) / (4 + cos (x))?
Anonim

Odpowiedź:

# (8sinx) / (4 + cosx) ^ 2 #

Wyjaśnienie:

Pochodna ilorazu jest zdefiniowana następująco:

# (u / v) '= (u'v-v'u) / v ^ 2 #

Pozwolić # u = 4-cosx # i # v = 4 + cosx #

Wiedząc to #color (niebieski) ((d (cosx)) / dx = -sinx) #

Znajdźmy # u '# i # v '#

#u '= (4-cosx)' = 0-kolor (niebieski) ((- sinx)) = sinx #

#v '= (4 + cosx)' = 0 + kolor (niebieski) ((- sinx)) = - sinx #

#G '(x) = (u'v-v'u) / v ^ 2 #

#G '(x) = (sinx (4 + cosx) - (- sinx) (4-cosx)) / (4 + cosx) ^ 2 #

#G '(x) = (4sinx + sinxcosx + 4sinx-sinxcosx) / (4 + cosx) ^ 2 #

#G '(x) = (8sinx) / (4 + cosx) ^ 2 #