Odpowiedź:
Jeśli Kyle jedzie z maksymalną prędkością
Wyjaśnienie:
Jak Kyle
Jeśli jedzie z maksymalną prędkością
Przejazd do pracy rano zajmuje Mirandzie 0,5 godziny, ale jazda samochodem z pracy zajmuje wieczorem 0,75 godziny. Które równanie najlepiej przedstawia tę informację, jeśli jedzie do pracy z prędkością r mil na godzinę i jedzie do domu w tempie o?
Żadnych równań do wyboru, więc zrobiłem cię jednym! Jazda z prędkością 50 km / h przez 0,5 godziny pozwoli uzyskać dystans 0,5 km. Jazda z prędkością v mph przez 0,75 godziny pozwoli uzyskać 0,75 mila w odległości. Zakładając, że idzie tą samą drogą do pracy iz powrotem, podróżuje tą samą ilością mil niż 0.5r = 0.75v
Czas t wymagany do przejechania pewnej odległości zmienia się odwrotnie do prędkości r. Jeśli pokonanie dystansu z prędkością 45 mil na godzinę zajmuje 2 godziny, jak długo potrwa jazda na tej samej odległości z prędkością 30 mil na godzinę?
3 godziny szczegółowo podane rozwiązanie, dzięki czemu można zobaczyć, skąd wszystko pochodzi. Podane Zliczanie czasu jest t Liczenie prędkości jest r Niech stała zmienności będzie d Stwierdzono, że t zmienia się odwrotnie z kolorem r (biały) („d”) -> kolor (biały) („d”) t = d / r Pomnóż obie strony przez kolor (czerwony) (r) kolor (zielony) (t kolor (czerwony) (xxr) kolor (biały) („d”) = kolor (biały) („d”) d / rcolor (czerwony ) (xxr)) kolor (zielony) (tcolor (czerwony) (r) = d xx kolor (czerwony) (r) / r) Ale r / r jest taki sam jak 1 tr = d xx 1 tr = d obracający tę rundę w drugą stronę d = tr, ale odpowie
Dwa samochody były oddalone od siebie o 539 mil i zaczęły podróżować do siebie na tej samej drodze w tym samym czasie. Jeden samochód jedzie z prędkością 37 mil na godzinę, drugi jedzie z prędkością 61 mil na godzinę. Jak długo zajęło im przejście dwóch samochodów?
Czas wynosi 5 1/2 godziny. Oprócz podanych prędkości istnieją dwie dodatkowe informacje, które są podane, ale nie są oczywiste. rArr Suma dwóch odległości przejechanych przez samochody wynosi 539 mil. rArr Czas potrzebny samochodom jest taki sam. Pozwól nam być czasem, w którym samochody mijają się. Napisz wyrażenie dla przebytej odległości w kategoriach t. Odległość = prędkość x czas d_1 = 37 xx t i d_2 = 61 xx t d_1 + d_2 = 539 Tak, 37t + 61t = 539 98t = 539 t = 5,5 Czas wynosi 5 1/2 godziny.