Odpowiedź:
Wykres
Wyjaśnienie:
Równanie jest w formie przechwycenia nachylenia i przechwytywania na
Stąd też linia przechodzi przez IV kwadrant.
Stąd wykres
Wykres linii l na płaszczyźnie xy przechodzi przez punkty (2,5) i (4,11). Wykres linii m ma nachylenie -2 i punkt przecięcia x 2. Jeśli punkt (x, y) jest punktem przecięcia linii l i m, jaka jest wartość y?
Y = 2 Krok 1: Określ równanie linii l Mamy wzór nachylenia m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Teraz przez punkt nachylenie formy równanie to y - y_1 = m (x - x_1) y-11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 Krok 2: Określ równanie linii m Punkt przecięcia x będzie zawsze mają y = 0. Dlatego dany punkt to (2, 0). Z nachyleniem mamy następujące równanie. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Krok 3: Napisz i rozwiąż układ równań Chcemy znaleźć rozwiązanie systemu {(y = 3x - 1), (y = -2x + 4):} Przez podstawienie: 3x - 1 = -2x + 4 5x = 5 x = 1 Oznacza to, że y = 3 (1
Linia prosta L przechodzi przez punkty (0, 12) i (10, 4). Znajdź równanie prostej, która jest równoległa do L i przechodzi przez punkt (5, –11). Rozwiąż bez papieru milimetrowego i użyj wykresów - pokaż wypracowanie
„y = -4 / 5x-7>„ równanie linii w ”kolor (niebieski)„ forma nachylenia-przecięcia ”to. • kolor (biały) (x) y = mx + b” gdzie m jest nachyleniem i b przecięcie y „” do obliczenia m użyj „koloru (niebieskiego)” wzoru gradientu • • kolor (biały) (x) m = (y_2-y_1) / (x_2-x_1) „pozwól” (x_1, y_1) = (0,12) "i" (x_2, y_2) = (10,4) rArrm = (4-12) / (10-0) = (- 8) / 10 = -4 / 5 rArr "linia L ma nachylenie "= -4 / 5 •" Linie równoległe mają równe nachylenia "rArr" linia równoległa do linii L ma również nachylenie "= -4 / 5 rArry = -4 / 5x + blarrcolor (niebiesk
Naszkicuj wykres y = 8 ^ x, podając współrzędne dowolnych punktów, w których wykres przecina osie współrzędnych. Opisz w pełni transformację, która przekształca wykres Y = 8 ^ x na wykres y = 8 ^ (x + 1)?
Zobacz poniżej. Funkcje wykładnicze bez transformacji pionowej nigdy nie przekraczają osi x. Jako taki, y = 8 ^ x nie będzie miał żadnych przecięć x. Będzie on miał punkt przecięcia Y w y (0) = 8 ^ 0 = 1. Wykres powinien przypominać następujący. wykres {8 ^ x [-10, 10, -5, 5]} Wykres y = 8 ^ (x + 1) to wykres y = 8 ^ x przesunięty o 1 jednostkę w lewo, tak że jest to y- przechwycenie znajduje się teraz w (0, 8). Zobaczysz również, że y (-1) = 1. wykres {8 ^ (x + 1) [-10, 10, -5, 5]} Mam nadzieję, że to pomoże!