Odpowiedź:
0
Wyjaśnienie:
Po pierwsze, wykres
Teraz musimy wiedzieć, czy
Wyróżnikiem równania kwadratowego jest -5. Która odpowiedź opisuje liczbę i rodzaj rozwiązań równania: 1 kompleksowe rozwiązanie 2 prawdziwe rozwiązania 2 złożone rozwiązania 1 prawdziwe rozwiązanie?
Twoje równanie kwadratowe ma 2 złożone rozwiązania. Wyróżnik równania kwadratowego może dać nam tylko informację o równaniu postaci: y = ax ^ 2 + bx + c lub parabola. Ponieważ najwyższy stopień tego wielomianu wynosi 2, musi mieć nie więcej niż 2 rozwiązania. Wyróżnikiem jest po prostu rzeczy pod symbolem pierwiastka kwadratowego (+ -sqrt ("")), ale nie sam symbol pierwiastka kwadratowego. + -sqrt (b ^ 2-4ac) Jeśli dyskryminator, b ^ 2-4ac, jest mniejszy niż zero (tj. dowolna liczba ujemna), to pod symbolem pierwiastka kwadratowego miałbyś negatyw. Ujemne wartości pod pierwiastkami kwadra
Jaka jest liczba rzeczywista, liczba całkowita, liczba całkowita, liczba wymierna i liczba niewymierna?
Wyjaśnienie Poniżej Liczby wymierne występują w 3 różnych formach; liczby całkowite, ułamki i kończące lub powtarzające się dziesiętne, takie jak 1/3. Liczby irracjonalne są dość „bałaganiarskie”. Nie mogą być zapisywane jako ułamki, są niekończące się, nie powtarzające się dziesiętne. Przykładem tego jest wartość π. Liczbę całkowitą można nazwać liczbą całkowitą i jest liczbą dodatnią lub ujemną albo zerem. Przykładem tego jest 0, 1 i -365.
Penny patrzyła na szafę z ubraniami. Liczba sukienek, które posiadała, wynosiła 18 razy więcej niż liczba garniturów. Łącznie liczba sukienek i liczba garniturów wyniosła 51. Jaka była liczba posiadanych sukienek?
Penny posiada 40 sukienek i 11 garniturów Niech d i s będą odpowiednio liczbą sukienek i garniturów. Powiedziano nam, że liczba sukienek wynosi 18 razy więcej niż liczba garniturów. Dlatego: d = 2s + 18 (1) Powiedziano nam również, że całkowita liczba sukienek i garniturów wynosi 51. Dlatego d + s = 51 (2) Od (2): d = 51-s Zastępując d w (1 ) powyżej: 51-s = 2s + 18 3s = 33 s = 11 Zastępowanie dla s w (2) powyżej: d = 51-11 d = 40 Zatem liczba sukienek (d) wynosi 40 i liczba kolorów (s) ) to 11.