Używamy testu linii pionowej do określenia, czy coś jest funkcją, więc dlaczego używamy testu poziomej linii dla funkcji odwrotnej w stosunku do testu linii pionowej?
Do określenia, czy odwrotność funkcji jest naprawdę funkcją, używamy tylko testu linii poziomej. Oto dlaczego: Po pierwsze, musisz zadać sobie pytanie, co to jest odwrotność funkcji, to gdzie x i y są przełączane, lub funkcja, która jest symetryczna do pierwotnej funkcji w linii, y = x. Tak więc używamy testu linii pionowej do określenia, czy coś jest funkcją. Co to jest linia pionowa? Cóż, to równanie to x = pewna liczba, wszystkie linie gdzie x jest równe pewnej stałej to linie pionowe. Dlatego, definiując funkcję odwrotną, aby określić, czy odwrotność tej funkcji jest funkcją, czy nie, będziesz testo
Jakie jest równanie dla pionowej linii przechodzącej przez (0, 5)?
Równanie to x = 0 Równanie dowolnej linii pionowej to x = k. Takie równanie ma stałą odciętą. Gdy linia przechodzi przez punkt (0,5), którego odcięta wynosi 0, jej równanie wynosi x = 0
Jakie jest równanie linii przechodzącej przez (0, -1) i jest prostopadłe do linii przechodzącej przez następujące punkty: (8, -3), (1,0)?
7x-3y + 1 = 0 Nachylenie linii łączącej dwa punkty (x_1, y_1) i (x_2, y_2) jest podane przez (y_2-y_1) / (x_2-x_1) lub (y_1-y_2) / (x_1-x_2 ) Ponieważ punkty to (8, -3) i (1, 0), nachylenie linii łączącej je zostanie podane przez (0 - (- 3)) / (1-8) lub (3) / (- 7) tj. -3/7. Produkt nachylenia dwóch prostopadłych linii wynosi zawsze -1. Stąd nachylenie linii prostopadłej do niego będzie 7/3 i stąd równanie w postaci nachylenia można zapisać jako y = 7 / 3x + c Gdy przechodzi przez punkt (0, -1), umieszczając te wartości w powyższym równaniu, otrzymamy -1 = 7/3 * 0 + c lub c = 1 Stąd pożądane równanie bę