Odpowiedź:
Wyjaśnienie:
Równanie koła środka (a, b) i promienia r wynosi:
Aby więc pomyśleć o równaniu koła, powinniśmy pomyśleć o jego środku i promieniu.
Środek jest podany (0,0).
Okrąg przechodzi przez punkt (1, -6), więc
promień to odległość między (0,0) a (1, -6)
Równanie koła to:
Linia prosta L przechodzi przez punkty (0, 12) i (10, 4). Znajdź równanie prostej, która jest równoległa do L i przechodzi przez punkt (5, –11). Rozwiąż bez papieru milimetrowego i użyj wykresów - pokaż wypracowanie
„y = -4 / 5x-7>„ równanie linii w ”kolor (niebieski)„ forma nachylenia-przecięcia ”to. • kolor (biały) (x) y = mx + b” gdzie m jest nachyleniem i b przecięcie y „” do obliczenia m użyj „koloru (niebieskiego)” wzoru gradientu • • kolor (biały) (x) m = (y_2-y_1) / (x_2-x_1) „pozwól” (x_1, y_1) = (0,12) "i" (x_2, y_2) = (10,4) rArrm = (4-12) / (10-0) = (- 8) / 10 = -4 / 5 rArr "linia L ma nachylenie "= -4 / 5 •" Linie równoległe mają równe nachylenia "rArr" linia równoległa do linii L ma również nachylenie "= -4 / 5 rArry = -4 / 5x + blarrcolor (niebiesk
Linia L ma równanie 2x- 3y = 5. Linia M przechodzi przez punkt (3, -10) i jest równoległa do linii L. Jak określić równanie dla linii M?
Zobacz proces rozwiązania poniżej: Linia L jest w standardowej postaci liniowej. Standardową formą równania liniowego jest: kolor (czerwony) (A) x + kolor (niebieski) (B) y = kolor (zielony) (C) Gdzie, jeśli to możliwe, kolor (czerwony) (A), kolor (niebieski) (B), a kolor (zielony) (C) to liczby całkowite, a A jest nieujemne, a A, B i C nie mają wspólnych czynników innych niż 1 kolor (czerwony) (2) x - kolor (niebieski) (3) y = kolor (zielony) (5) Nachylenie równania w standardowej postaci to: m = -kolor (czerwony) (A) / kolor (niebieski) (B) Zastępowanie wartości z równania na wzór nachylenia
Napisz równanie punkt-nachylenie równania o danym nachyleniu, które przechodzi przez wskazany punkt. A.) linia z nachyleniem -4 przechodzącym przez (5,4). a także B.) linia z nachyleniem 2 przechodzącym przez (-1, -2). proszę o pomoc, to mylące?
Y-4 = -4 (x-5) "i" y + 2 = 2 (x + 1)> "równanie linii w" kolorze (niebieski) "forma punkt-nachylenie" jest. • kolor (biały) (x) y-y_1 = m (x-x_1) "gdzie m jest nachyleniem i" (x_1, y_1) "punkt na linii" (A) "podany" m = -4 "i „(x_1, y_1) = (5,4)” zastępując te wartości równaniem daje „y-4 = -4 (x-5) larrcolor (niebieski)„ w formie punkt-nachylenie ”(B)„ podany ”m = 2 "i" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (niebieski) " w formie punkt-nachylenie ”