Odpowiedź:
Wyjaśnienie:
Domena to zestaw
Czy jest jakiś
Nie! Możemy podłączyć dowolną wartość
Aby uczynić to bardziej namacalnym, podłączmy niektóre wartości
Zauważ, że mogłem użyć znacznie więcej
Mam nadzieję że to pomoże!
Domena f (x) jest zbiorem wszystkich rzeczywistych wartości z wyjątkiem 7, a domena g (x) jest zbiorem wszystkich rzeczywistych wartości z wyjątkiem -3. Jaka jest domena (g * f) (x)?
Wszystkie liczby rzeczywiste z wyjątkiem 7 i -3, kiedy mnożymy dwie funkcje, co robimy? bierzemy wartość f (x) i mnożymy ją przez wartość g (x), gdzie x musi być taka sama. Jednak obie funkcje mają ograniczenia 7 i -3, więc produkt dwóch funkcji musi mieć * oba * ograniczenia. Zwykle podczas wykonywania operacji na funkcjach, jeśli poprzednie funkcje (f (x) i g (x)) miały ograniczenia, zawsze są traktowane jako część nowego ograniczenia nowej funkcji lub ich działania. Można to również wizualizować, tworząc dwie funkcje wymierne o różnych ograniczonych wartościach, a następnie mnożąc je i sprawdzając, gdzie
Jaka jest domena połączonej funkcji h (x) = f (x) - g (x), jeśli domena f (x) = (4,4,5) i domena g (x) to [4, 4,5 )?
Domena to D_ {f-g} = (4,4,5). Zobacz wyjaśnienie. (f-g) (x) można obliczyć tylko dla tych x, dla których zdefiniowano zarówno f, jak i g. Możemy więc napisać, że: D_ {f-g} = D_fnnD_g Tutaj mamy D_ {f-g} = (4,4,5) nn [4,4,5) = (4,4,5)
Jeśli f (x) = 3x ^ 2 i g (x) = (x-9) / (x + 1) i x! = - 1, to co f (g (x)) będzie równe? g (f (x))? f ^ -1 (x)? Jaka byłaby domena, zakres i zera dla f (x)? Jaka byłaby domena, zakres i zera dla g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x w RR}, R_f = {f (x) w RR; f (x)> = 0} D_g = {x w RR; x! = - 1}, R_g = {g (x) w RR; g (x)! = 1}