Odpowiedź:
Wyjaśnienie:
i j k
3 0 5
3 -6 4
Aby obliczyć produkt krzyżowy, okładka ustawia wektory w tabeli, jak pokazano powyżej. Następnie ukryj kolumnę, dla której obliczasz wartość (np. Jeśli szukasz wartości i obejmuje pierwszą kolumnę). Następnie weź produkt na najwyższą wartość w następnej kolumnie po prawej i dolną wartość pozostałej kolumny. Odejmij od tego iloczyn dwóch pozostałych wartości. Zostało to przeprowadzone poniżej, aby pokazać, jak to się robi:
i = (0 4) - (5 (-6)) = 0 - (-30) = 30
j = (5 3) - (3 4) = 15 - 12 = 3
k = (3 (-6)) - (0 3) = -18 - 0 = -18
W związku z tym:
Jaki jest produkt krzyżowy <0,8,5> i <-1, -1,2>?
<21,-5,8> We know that vecA xx vecB = ||vecA|| * ||vecB|| * sin(theta) hatn, where hatn is a unit vector given by the right hand rule. So for of the unit vectors hati, hatj and hatk in the direction of x, y and z respectively, we can arrive at the following results. color(white)( (color(black){hati xx hati = vec0}, color(black){qquad hati xx hatj = hatk}, color(black){qquad hati xx hatk = -hatj}), (color(black){hatj xx hati = -hatk}, color(black){qquad hatj xx hatj = vec0}, color(black){qquad hatj xx hatk = hati}), (color(black){hatk xx hati = hatj}, color(black){qquad hatk xx hatj = -hati}, color(black){qquad hatk xx hatk
Jaki jest produkt krzyżowy [0,8,5] i [1,2, -4]?
[0,8,5] xx [1,2, -4] = [-42,5, -8] Produkt krzyżowy vecA i vecB podaje vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, gdzie theta jest dodatnim kątem między vecA i vecB, a hatn jest wektorem jednostkowym o kierunku określonym przez regułę prawej ręki. Dla wektorów jednostkowych hati, hatj i hatk w kierunkach odpowiednio x, y i z, kolor (biały) ((kolor (czarny) {hati xx hati = vec0}, kolor (czarny) {qquad hati xx hatj = hatk} , kolor (czarny) {qquad hati xx hatk = -hatj}), (kolor (czarny) {hatj xx hati = -hatk}, kolor (czarny) {qquad hatj xx hatj = vec0}, kolor (czarny) {qquad hatj xx hatk = hati}), (kolor
Jaki jest produkt krzyżowy [-1,0,1] i [0,1,2]?
Produkt krzyżowy wynosi = 〈- 1,2, -1〉 Produkt krzyżowy jest obliczany z wyznacznikiem | (veci, vecj, veck), (d, e, f), (g, h, i) | gdzie 〈d, e, f〉 i 〈g, h, i〉 są 2 wektorami Tutaj mamy veca = 〈- 1,0,1〉 i vecb = 〈0,1,2〉 Dlatego | (veci, vecj, veck), (-1,0,1), (0,1,2) | = veci | (0,1), (1,2) | -vecj | (-1,1), (0,2) | + veck | (-1,0), (0,1) | = veci (-1) -vecj (-2) + veck (-1) = 〈- 1,2, -1〉 = vecc Weryfikacja przez wykonanie 2 produktów kropkowych 〈-1,2, -1〉. 〈- 1, 0,1〉 = 1 + 0-1 = 0 〈-1,2, -1〉. 〈0,1,2〉 = 0 + 2-2 = 0 Więc vecc jest prostopadły do veca i vecb