Odpowiedź:
Wyjaśnienie:
Dam ci
Z podanych informacji wynikają dwa równania. Oto kilka rzeczy do zapamiętania, zanim wykonam równania:
- Słowo „jest” oznacza „równy”, więc wszędzie, gdzie widzisz słowo „jest”, możesz użyć
#=# znak. - „Więcej niż” oznacza dodawanie, a „mniej niż” oznacza odejmowanie. Więc możesz użyć a
#+# znak i#-# znak, jeśli widzisz te zwroty. - „Trzy dziesiąte” to wypisana forma
#3/10# , więc użyję tego w równaniu.
Oto zwroty zamienione na równania:
Teraz ustaw wartość dla
Zdjęcie jest
Długość prostokąta jest 3 razy większa niż szerokość. Jeśli długość została zwiększona o 2 cale, a szerokość o 1 cal, nowy obwód wynosiłby 62 cale. Jaka jest szerokość i długość prostokąta?
Długość wynosi 21, a szerokość 7 Używam l dla długości, a dla szerokości Najpierw podaje się, że l = 3w Nowa długość i szerokość to l + 2 i w + 1 odpowiednio Nowy obwód to 62 Więc, l + 2 + l + 2 + w + 1 + w + 1 = 62 lub, 2l + 2w = 56 l + w = 28 Teraz mamy dwie relacje między l i w Zastąp pierwszą wartość lw drugim równaniu Otrzymujemy, 3w + w = 28 4w = 28 w = 7 Wprowadzenie tej wartości w w jednym z równań, l = 3 * 7 l = 21 Tak więc długość wynosi 21, a szerokość 7
Długość prostokątnego ogrodu wynosi 3 jardy więcej niż dwa razy więcej niż szerokość. Obwód ogrodu wynosi 30 y. Jaka jest szerokość i długość ogrodu?
Szerokość prostokątnego ogrodu wynosi 4yda, a długość 11yd. Dla tego problemu nazwijmy szerokość w. Wtedy długość, która jest „3 jd większa niż dwukrotna jej szerokość”, wynosiłaby (2w + 3). Wzór na obwód prostokąta jest następujący: p = 2w * + 2l Zastępowanie dostarczonych informacji daje: 30 = 2w + 2 (2w + 3) Rozszerzanie tego, co jest w nawiasie, łączenie takich terminów, a następnie rozwiązywanie dla w przy zachowaniu równania wyważone daje: 30 = 2w + 4w + 6 30 = 6w + 6 30 - 6 = 6w + 6 - 6 24 = 6w 24/6 = (6w) / 6 w = 4 Zastępowanie wartości w w zależności dla długości daje : l = (2 * 4) + 3 l =
Obwód trójkąta wynosi 29 mm. Długość pierwszej strony jest dwukrotnie większa niż długość drugiej strony. Długość trzeciej strony wynosi 5 więcej niż długość drugiej strony. Jak znaleźć boczne długości trójkąta?
S_1 = 12 s_2 = 6 s_3 = 11 Obwód trójkąta jest sumą długości wszystkich jego boków. W tym przypadku podaje się, że obwód wynosi 29 mm. Więc w tym przypadku: s_1 + s_2 + s_3 = 29 Więc rozwiązywanie dla długości boków, tłumaczymy instrukcje w podanej formie równania. „Długość pierwszej strony jest dwa razy dłuższa niż druga strona” Aby rozwiązać ten problem, przypisujemy zmienną losową s_1 lub s_2. W tym przykładzie pozwoliłbym x być długością drugiej strony, aby uniknąć ułamków w moim równaniu. więc wiemy, że: s_1 = 2s_2, ale ponieważ pozwoliliśmy s_2 być x, teraz wiemy, że: s_1 = 2x s