Odpowiedź:
Wyjaśnienie:
# „równanie linii w” kolor (niebieski) „standardowy formularz” # jest.
#color (czerwony) (pasek (ul (| kolor (biały) (2/2) kolor (czarny) (Ax + + = C) kolor (biały) (2/2) |))) #
# "gdzie A jest dodatnią liczbą całkowitą, a B, C są liczbami całkowitymi" #
# „równanie linii w” kolor (niebieski) „formularz nachylenia-przecięcia” # jest.
# • kolor (biały) (x) y = mx + b #
# "gdzie m jest nachyleniem, a b przecięciem y" #
# y = -1 / 3x-4 "jest w tej formie" #
# "ze spadkiem" = -1 / 3 #
# • „Linie równoległe mają jednakowe nachylenia” #
# y = -1 / 3x + kolor blarr (niebieski) „jest równaniem częściowym” #
# "aby znaleźć substytut b" (-6,0) "w równaniu częściowym" #
# 0 = 2 + brArrb = 0-2 = -2 #
# y = -1 / 3x-2larrcolor (czerwony) „w formie nachylenia-przecięcia” #
# "pomnóż przez 3" #
# 3y = -x-6 #
# x + 3y = -6larrcolor (czerwony) „w standardowej formie” #
# x + 3y + 6 = 0larrcolor (czerwony) „w ogólnej formie” #
Linia L ma równanie 2x- 3y = 5. Linia M przechodzi przez punkt (3, -10) i jest równoległa do linii L. Jak określić równanie dla linii M?
Zobacz proces rozwiązania poniżej: Linia L jest w standardowej postaci liniowej. Standardową formą równania liniowego jest: kolor (czerwony) (A) x + kolor (niebieski) (B) y = kolor (zielony) (C) Gdzie, jeśli to możliwe, kolor (czerwony) (A), kolor (niebieski) (B), a kolor (zielony) (C) to liczby całkowite, a A jest nieujemne, a A, B i C nie mają wspólnych czynników innych niż 1 kolor (czerwony) (2) x - kolor (niebieski) (3) y = kolor (zielony) (5) Nachylenie równania w standardowej postaci to: m = -kolor (czerwony) (A) / kolor (niebieski) (B) Zastępowanie wartości z równania na wzór nachylenia
Jaki jest punkt przecięcia z osią xi punkt przecięcia z osią wykresu równania 3x + 7y = 21?
X = 7 "i" y = 3 "przecięcia x i y są punktami na osi xi" "osi y, w których wykres przecina się z nimi", aby znaleźć punkty przecięcia, niech x = 0, w równaniu dla y-przecięcie „•” niech y = 0, w równaniu dla x-przecięcia ”x = 0to0 + 7y = 21rArry = 3larrcolor (czerwony)„ przecięcie y ”y = 0to3x + 0 = 21rArrx = 7larrcolor (czerwony)„ x -intercept "wykres {-3 / 7x + 3 [-10, 10, -5, 5]}
Jak znaleźć wszystkie punkty na krzywej x ^ 2 + xy + y ^ 2 = 7, w których linia styczna jest równoległa do osi X i punkt, w którym linia styczna jest równoległa do osi y?
Linia styczna jest równoległa do osi x, gdy nachylenie (stąd dy / dx) wynosi zero i jest równoległe do osi y, gdy nachylenie (ponownie, dy / dx) idzie do oo lub -oo Zaczniemy od znalezienia dy / dx: x ^ 2 + xy + y ^ 2 = 7 d / dx (x ^ 2 + xy + y ^ 2) = d / dx (7) 2x + 1y + xdy / dx + 2y dy / dx = 0 dy / dx = - (2x + y) / (x + 2y) Teraz dy / dx = 0, gdy nuimerator wynosi 0, pod warunkiem, że nie stanowi to mianownika 0. 2x + y = 0, gdy y = -2x Mamy teraz dwa równania: x ^ 2 + xy + y ^ 2 = 7 y = -2x Rozwiąż (przez podstawienie) x ^ 2 + x (-2x) + (-2x) ^ 2 = 7 x ^ 2 -2x ^ 2 + 4x ^ 2 = 7 3x ^ 2 = 7 x = + - sqrt (