Jaka liczba do kwadratu wynosi 54? + Przykład

Jaka liczba do kwadratu wynosi 54? + Przykład
Anonim

Odpowiedź:

#54# nie jest idealnym kwadratem, ale # 3sqrt6 # jest uproszczoną radykalną formą liczby.

Wyjaśnienie:

Nadal możemy to zrobić #54# pod znakiem pierwiastka kwadratowego i uprościć, aby uzyskać wartość.

Idealne kwadraty: liczby są iloczynem liczby i samej siebie, na przykład: #4# to doskonały kwadrat #2 * 2# równa się #4#.

# sqrt54 #

Musimy znaleźć czynniki #54# które są doskonałymi kwadratami. Z odrobiną zgadywania i sprawdź, czy jeszcze tego nie wiesz, #54# jest podzielne przez #9#, i #9# to idealny kwadrat (#3 * 3#).

Więc podzielmy się #54# o 9, aby znaleźć inny czynnik. Dostajemy #6# (#6 * 9 = 54#). Teraz musimy to zrobić #54# w „drzewo” w celu uproszczenia czynników:

54 / 9 6 / / 3 3 3 2

Tutaj zepsułem #54# w najmniejsze czynniki. Mamy #3# i #3# dla #9#, i #2# i #3# dla #6#. W ten sposób można napisać uproszczoną radykalną formę kwadratu:

Istnieją dwa #3#s, więc weź jedną. Masz dwa różne numery pod #6#, więc pomnóż je. Weź swój pierwszy numer, umieść go przed radykalnym znakiem:

# 3sqrt #

Teraz weź produkt dwóch liczb i umieść go wewnątrz radykalnego:

# 3sqrt6 #

W ten sposób otrzymujesz kwadrat w formie radykalnej. Zdaję sobie sprawę, że wyglądało to nieco myląco i jest łatwiejsze niż to ująłem. Zapytaj mnie, jeśli masz jakieś pytania.