Odpowiedź:
Wysokość jest
Wyjaśnienie:
Obszar trójkąta, którego podstawą jest
Niech wysokość danego trójkąta będzie
Stąd jego powierzchnia jest
lub
to znaczy
lub
lub
lub
Stąd wysokość
Wysokość trójkąta rośnie z szybkością 1,5 cm / min, podczas gdy obszar trójkąta rośnie w tempie 5 cm / min. W jakim tempie zmienia się podstawa trójkąta, gdy wysokość wynosi 9 cm, a powierzchnia 81 cm?
Jest to problem związany ze stawkami (zmiany). Interesujące zmienne to a = wysokość A = powierzchnia, a ponieważ pole trójkąta wynosi A = 1 / 2ba, potrzebujemy b = podstawa. Podane szybkości zmian wyrażone są w jednostkach na minutę, więc (niewidzialna) zmienna niezależna to t = czas w minutach. Podajemy: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min I jesteśmy proszeni o znalezienie (db) / dt, gdy a = 9 cm i A = 81 cm „” ^ 2 A = 1 / 2ba, różnicując względem t, otrzymujemy: d / dt (A) = d / dt (1 / 2ba). Potrzebujemy reguły produktu po prawej stronie. (dA) / dt = 1/2 (db) / dt a + 1 / 2b (da) /
Obwód trójkąta wynosi 29 mm. Długość pierwszej strony jest dwukrotnie większa niż długość drugiej strony. Długość trzeciej strony wynosi 5 więcej niż długość drugiej strony. Jak znaleźć boczne długości trójkąta?
S_1 = 12 s_2 = 6 s_3 = 11 Obwód trójkąta jest sumą długości wszystkich jego boków. W tym przypadku podaje się, że obwód wynosi 29 mm. Więc w tym przypadku: s_1 + s_2 + s_3 = 29 Więc rozwiązywanie dla długości boków, tłumaczymy instrukcje w podanej formie równania. „Długość pierwszej strony jest dwa razy dłuższa niż druga strona” Aby rozwiązać ten problem, przypisujemy zmienną losową s_1 lub s_2. W tym przykładzie pozwoliłbym x być długością drugiej strony, aby uniknąć ułamków w moim równaniu. więc wiemy, że: s_1 = 2s_2, ale ponieważ pozwoliliśmy s_2 być x, teraz wiemy, że: s_1 = 2x s
Jedna strona trójkąta jest o 2 cm krótsza niż podstawa, x. Druga strona jest o 3 cm dłuższa niż podstawa. Jakie długości podstawy pozwolą obwodowi trójkąta osiągnąć co najmniej 46 cm?
X> = 15 Podstawa = x Strona1 = x-2 Strona2 = x + 3 Obwód jest sumą trzech boków. P = x + (x-2) + (x + 3)> = 46 3x +1> = 46 x> = 45/3 = 15