Odpowiedź:
Możliwe są także środki z dwóch pozostałych stron,
Wyjaśnienie:
Trójkąt równoramienny ma dwie strony o równej długości i drugi bok o innej długości.
-
Możliwość 1.
# 22 cm # jest miarą dwóch równych boków.#:. # Pozwolić,# x # być miarą drugiej strony.#:.# Obwód# = (22 + 22 + x) cm = (44 + x) cm = 71 cm. #:. x = 27 cm. # -
Możliwość 2.
# 22 cm # jest miarą jednej nierównej strony.#:.# Pozwolić,# x # być miarą dwóch równych boków.#:.# Obwód#=# # (22 + x + x) cm = (22 + 2x) cm = 71 cm. # #:. 2x = 49 cm. # #:. x = 24,5 cm. #
Dlatego też możliwe są inne środki z dwóch pozostałych stron,
Uwaga: aby dowiedzieć się więcej o trójkącie równoramiennym, sprawdź:
http://en.wikipedia.org/wiki/Isosceles_triangle.
Długość podstawy trójkąta równoramiennego jest o 4 cale mniejsza niż długość jednego z dwóch równych boków trójkątów. Jeśli obwód wynosi 32, jakie są długości każdego z trzech boków trójkąta?
Boki to 8, 12 i 12. Możemy zacząć od utworzenia równania, które może reprezentować informacje, które posiadamy. Wiemy, że całkowity obwód wynosi 32 cale. Możemy reprezentować każdą stronę z nawiasami. Ponieważ wiemy, że dwie inne strony oprócz bazy są równe, możemy to wykorzystać na naszą korzyść. Nasze równanie wygląda tak: (x-4) + (x) + (x) = 32. Możemy to powiedzieć, ponieważ podstawa jest o 4 mniejsza niż pozostałe dwa boki, x. Gdy rozwiążemy to równanie, otrzymamy x = 12. Jeśli podłączymy to do każdej ze stron, otrzymamy 8, 12 i 12. Po dodaniu dochodzi do obwodu 32, co oznacza,
Obwód trójkąta wynosi 29 mm. Długość pierwszej strony jest dwukrotnie większa niż długość drugiej strony. Długość trzeciej strony wynosi 5 więcej niż długość drugiej strony. Jak znaleźć boczne długości trójkąta?
S_1 = 12 s_2 = 6 s_3 = 11 Obwód trójkąta jest sumą długości wszystkich jego boków. W tym przypadku podaje się, że obwód wynosi 29 mm. Więc w tym przypadku: s_1 + s_2 + s_3 = 29 Więc rozwiązywanie dla długości boków, tłumaczymy instrukcje w podanej formie równania. „Długość pierwszej strony jest dwa razy dłuższa niż druga strona” Aby rozwiązać ten problem, przypisujemy zmienną losową s_1 lub s_2. W tym przykładzie pozwoliłbym x być długością drugiej strony, aby uniknąć ułamków w moim równaniu. więc wiemy, że: s_1 = 2s_2, ale ponieważ pozwoliliśmy s_2 być x, teraz wiemy, że: s_1 = 2x s
Stosunek jednej strony trójkąta ABC do odpowiedniej strony podobnego trójkąta DEF wynosi 3: 5. Jeśli obwód trójkąta DEF wynosi 48 cali, jaki jest obwód trójkąta ABC?
„Obwód” trójkąta ABC = 28,8 Ponieważ trójkąt ABC ~ trójkąt DEF to wtedy („strona„ ABC ”) / („ odpowiednia strona „DEF” = 3/5 kolor (biały) („XXX”) rArr („obwód „ABC” / („obwód„ DEF ”) = 3/5, a ponieważ„ obwód ”DEF = 48 mamy kolor (biały) („ XXX ”) („ obwód „ABC”) / 48 = 3/5 rArrcolor ( biały) („XXX”) „obwód” ABC = (3xx48) /5=144/5=28.8