Jakie są granice x jeśli (2x-1) / (x + 5)> = (x + 2) / (x + 3)?

Jakie są granice x jeśli (2x-1) / (x + 5)> = (x + 2) / (x + 3)?
Anonim

Odpowiedź:

#x = -5, x = -3, x = 1-sqrt (14), x = 1 + sqrt (14) #

#> = "występuje dla" x <-5 "i" x> = 1 + sqrt (14) "i" #

# -3 <x <= 1-sqrt (14) „.” #

Wyjaśnienie:

# => (2x-1) / (x + 5) - (x + 2) / (x + 3)> = 0 #

# => ((2x-1) (x + 3) - (x + 2) (x + 5)) / ((x + 5) (x + 3))> = 0 #

# => (2x ^ 2 + 5x-3-x ^ 2-7x-10) / ((x + 5) (x + 3))> = 0 #

# => (x ^ 2 -2x-13) / ((x + 5) (x + 3))> = 0 #

# => ((x - 1 - sqrt (14)) (x - 1 + sqrt (14))) / ((x + 5) (x + 3))> = 0 #

# "Mamy następujące zera w rzędzie wielkości:" #

# …. -5 …. -3 …. 1-sqrt (14) …. 1 + sqrt (14) ….. #

#-----------0+++#

#-------0+++++++#

#-----0+++++++++#

#--0++++++++++++#

#'========================='#

#++0---0++0---0+++#

# „Widzimy„> = 0 ”występuje dla„ x <-5 ”i„ x> = 1 + sqrt (14) ”i„ #

# -3 <x <= 1-sqrt (14) „.” #