Odpowiedź:
Wyjaśnienie:
Mamy:
Zmieńmy równanie, aby wyrazić je jako kwadratowe:
Możemy teraz rozwiązać
Dlatego rozwiązania równania są
Wyróżnikiem równania kwadratowego jest -5. Która odpowiedź opisuje liczbę i rodzaj rozwiązań równania: 1 kompleksowe rozwiązanie 2 prawdziwe rozwiązania 2 złożone rozwiązania 1 prawdziwe rozwiązanie?
Twoje równanie kwadratowe ma 2 złożone rozwiązania. Wyróżnik równania kwadratowego może dać nam tylko informację o równaniu postaci: y = ax ^ 2 + bx + c lub parabola. Ponieważ najwyższy stopień tego wielomianu wynosi 2, musi mieć nie więcej niż 2 rozwiązania. Wyróżnikiem jest po prostu rzeczy pod symbolem pierwiastka kwadratowego (+ -sqrt ("")), ale nie sam symbol pierwiastka kwadratowego. + -sqrt (b ^ 2-4ac) Jeśli dyskryminator, b ^ 2-4ac, jest mniejszy niż zero (tj. dowolna liczba ujemna), to pod symbolem pierwiastka kwadratowego miałbyś negatyw. Ujemne wartości pod pierwiastkami kwadra
Jakie są rozwiązania równania? 2x ^ 2 - x = 3
X = 3/2 = 2x ^ 2-x-3 = 0 Przez sumę i produkt = 2x ^ 2-3x + 2x-3 = 0 = x (2x-3) +1 (2x-3) = 0 = (x +1) (2x-3) = 0 Teraz x = -1 lub x = 3/2 x = -1 nie spełnia równania, podczas gdy x = 3/2. = 2 (3/2) ^ 2- (3/2) = (9-3) / 2 = 3 = 3 Stąd okazało się, że to pomaga!
Użyj dyskryminatora, aby określić liczbę i rodzaj rozwiązań, które ma równanie? x ^ 2 + 8x + 12 = 0 A. nie prawdziwe rozwiązanie B.one prawdziwe rozwiązanie C. dwa racjonalne rozwiązania D. dwa nieracjonalne rozwiązania
C. dwa rozwiązania wymierne Rozwiązaniem równania kwadratowego a * x ^ 2 + b * x + c = 0 jest x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In rozważany problem, a = 1, b = 8 c = 12 Zastępowanie, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 lub x = (-8+ - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 i x = (-8 - 4) / 2 x = (- 4) / 2 i x = (-12) / 2 x = - 2 i x = -6