Jaki jest kierunek i wielkość pola magnetycznego, którym porusza się cząstka? Jaki jest kierunek i wielkość pola magnetycznego, którym porusza się druga cząstka?
(a) „B” = 0,006 „” „N.s” lub „Tesla” w kierunku wychodzącym z ekranu. Siła F na cząstce ładunku q poruszającej się z prędkością v przez pole magnetyczne o sile B jest określona przez: F = Bqv:. B = F / (qv) B = 0,24 / (9,9xx10 ^ (- 5) xx4xx10 ^ 5) = 0,006 „” „Ns” Te 3 wektory pola magnetycznego B, prędkość v i siła na cząstce F są wzajemnie prostopadłe: Wyobraź sobie obracanie powyższego diagramu o 180 ^ @ w kierunku prostopadłym do płaszczyzny ekranu. Widać, że ładunek + ve poruszający się od lewej do prawej strony ekranu (na wschód) będzie odczuwał siłę pionowo w dół (na południe), jeśli kierunek pola B jest po
Cząstka porusza się wzdłuż osi x w taki sposób, że jej położenie w czasie t jest podane przez x (t) = (2-t) / (1-t). Jakie jest przyspieszenie cząstki w czasie t = 0?
2 "ms" ^ - 2 a (t) = d / dt [v (t)] = (d ^ 2) / (dt ^ 2) [x (t)] x (t) = (2-t) / (1-t) v (t) = d / dt [(2-t) / (1-t)] = ((1-t) d / dt [2-t] - (2-t) d / dt [1-t]) / (1-t) ^ 2 = ((1-t) (- 1) - (2-t) (- 1)) / (1-t) ^ 2 = (t-1 + 2-t) / (1-t) ^ 2 = 1 / (1-t) ^ 2 a (t) = d / dt [(1-t) ^ - 2] = - 2 (1-t) ^ - 3 * d / dt [1-t] = - 2 (1-t) ^ - 3 (-1) = 2 / (1-t) ^ 3 a (0) = 2 / (1-0) ^ 3 = 2/1 ^ 3 = 2/1 = 2 "ms" ^ - 2
Jakie jest przyspieszenie samochodu, który porusza się po linii prostej ze stałą prędkością?
Przyspieszenie zerowe jest definiowane jako szybkość zmiany prędkości. W danym problemie samochód porusza się po linii prostej ze stałą prędkością. Przyspieszenie vec a - = (dvecv) / dt Wyraźnie (dvecv) / dt = 0 Lub nie ma żadnego przyspieszenia samochodu. Jeśli weźmiemy pod uwagę siłę opóźniającą wytworzoną przez tarcie lub opór powietrza, to możemy powiedzieć, że jego przyspieszenie to siła opóźniająca podzielona przez masę samochodu