Odpowiedź:
rozwiązania to: 8 10 12
lub 10,12,14
lub 12,14,16
Wyjaśnienie:
Niech pierwsza liczba parzysta będzie n. Suma będzie n + n + 2 + n + 4 = 3 n + 6 i
25 <3 n + 6 <45.
19 <3n <39
Więc,
możliwe wartości n = 8,10,12
Dla startera n = 8 suma wynosi 8 + 10 +12 = 30.
dla n = 10 istnieje liczba 10.12,14, gdzie suma = 36
dla n = 12 istnieje liczba 12,14,16, gdzie suma = 42
Stąd zestawy trzech kolejnych liczb są
set1
lub
set2
lub
set3
Suma trzech kolejnych liczb całkowitych wynosi 71 mniej niż najmniejsza z liczb całkowitych. Jak znaleźć liczby całkowite?
Niech najmniejsza z trzech kolejnych liczb całkowitych będzie x Suma trzech kolejnych liczb całkowitych będzie następująca: (x) + (x + 1) + (x + 2) = 3x + 3 Powiedziano nam, że 3x + 3 = x-71 rarr 2x = -74 rarr x = -37, a trzy kolejne liczby całkowite to -37, -36 i -35
Suma trzech kolejnych liczb całkowitych wynosi 216. Jaka jest największa z trzech liczb całkowitych?
Największa liczba to 73 Niech pierwsza liczba całkowita będzie n Następnie n + (n + 1) + (n + 2) = 216 => 3n + 3 = 216 Odejmij 3 z obu stron 3n = 213 Podziel obie strony o 3 n = 71 Więc największa liczba -> n + 2 = 71 + 2 = 73
Znając wzór na sumę N liczb całkowitych a) jaka jest suma pierwszych N kolejnych liczb całkowitych kwadratowych, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma pierwszych N kolejnych liczb całkowitych sześcianu Sigma_ (k = 1) ^ N k ^ 3?
Dla S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Mamy sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rozwiązywanie dla sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tak sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /