Niech trójkąt równikowy ABC wpisany w okrąg o promieniu r
Stosujemy prawo sinusa do trójkąta OBC
Teraz obszar wpisanego trójkąta jest
Teraz
i
Wreszcie
Dwa równoległe akordy koła o długości 8 i 10 służą jako podstawy trapezu wpisanego w okrąg. Jeśli długość promienia okręgu wynosi 12, jaki jest największy możliwy obszar takiego opisanego wpisanego trapezu?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 Rozważ fig. 1 i 2 Schematycznie, moglibyśmy wstawić równoległobok ABCD w okrąg, a pod warunkiem, że boki AB i CD są akordami okręgów, tak jak na rysunku 1 lub 2. Warunek, że boki AB i CD muszą być akordy koła sugerują, że wpisany trapez musi być równoramienny, ponieważ przekątne trapezu (AC i CD) są równe, ponieważ kapelusz BD = B kapelusz AC = B hatD C = kapelusz CD i linia prostopadła do przechodzenia AB i CD przez środek E przecina te akordy (oznacza to, że AF = BF i CG = DG, a trójkąty utworzone przez przecięcie przekątnych z podstawami w AB i CD są r&
Jaki jest obszar trójkąta równobocznego wpisanego w okrąg o promieniu 5 cali?
(50 + 50 * 1/2) sqrt 3/4 Delta ABC jest równoboczny. O jest centrum. | OA | = 5 = | OB | Kapelusz O B = 120º = (2 pi) / 3 Prawo Kozaków: | AB | ^ 2 = 5 ^ 2 + 5 ^ 2 - 2 * 5 ^ 2 cos 120º = L ^ 2 A_Delta = L ^ 2 sqrt 3/4
Okrąg A ma promień 2 i środek (6, 5). Okrąg B ma promień 3 i środek (2, 4). Jeśli okrąg B zostanie przetłumaczony przez <1, 1>, czy nakłada się on na okrąg A? Jeśli nie, jaka jest minimalna odległość między punktami w obu okręgach?
„okręgi pokrywają się”> „musimy tutaj porównać odległość (d)„ ”między środkami do sumy promieni” • „jeśli suma promieni”> d ”, to koła pokrywają się • •„ jeśli suma promienie „<d” wtedy nie pokrywają się ”„ przed obliczeniem d wymagamy znalezienia nowego centrum ”„ B po danym tłumaczeniu ”„ pod tłumaczeniem ”<1,1> (2,4) na (2 + 1, 4 + 1) do (3,5) larrcolor (czerwony) „nowy środek B” „obliczyć d użyj wzoru„ kolor (niebieski) ”„ d = sqrt ((x_2-x_1) ^ 2 + (y_2- y_1) ^ 2) „niech” (x_1, y_1) = (6,5) „i” (x_2, y_2) = (3,5) d = sqrt ((3-6) ^ 2 + (5-5) ^ 2) = sqrt9 = 3 "suma promieni" = 2 + 3 = 5 &quo