Odpowiedź:
Zobacz proces rozwiązania poniżej:
Wyjaśnienie:
Możemy użyć formuły nachylenia punktu, aby napisać równanie dla tego problemu. Punktowo-nachylona forma równania liniowego to:
Gdzie
Zastępowanie nachylenia i wartości z punktu problemu daje:
Jeśli to konieczne, możemy przekonwertować to na formę przechyłki. Formą nachylenia-przecięcia równania liniowego jest:
Gdzie
Równanie linii to 2x + 3y - 7 = 0, znajdź: - (1) nachylenie linii (2) równanie linii prostopadłej do danej linii i przechodzące przez przecięcie linii x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 kolor (biały) („ddd”) -> kolor (biały) („ddd”) y = 3 / 2x + 1 Pierwsza część zawiera wiele szczegółów pokazujących działanie pierwszych zasad. Po przyzwyczajeniu się do nich i użyciu skrótów użyjesz znacznie mniej linii. kolor (niebieski) („Określ punkt przecięcia równań początkowych”) x-y + 2 = 0 ”„ ....... Równanie (1) 3x + y-10 = 0 ”„ .... Równanie ( 2) Odejmij x od obu stron równania (1), podając -y + 2 = -x Pomnóż obie strony przez (-1) + y-2 = + x „” .......... Równanie (1_a ) Używanie Eqn (1_a) zastępuje x w Eqn (2) kolor (zielony) (3color (czerwony
Jakie jest równanie linii, która przechodzi przez (1,2) i jest równoległe do linii, której równanie jest 4x + y-1 = 0?
Y = -4x + 6 Spójrz na diagram Podana linia (czerwona linia kolorów) to - 4x + y-1 = 0 Wymagana linia (zielona linia kolorów) przechodzi przez punkt (1,2) Krok - 1 Znajdź nachylenie danej linii. Jest w postaci ax + o + c = 0 Jej nachylenie jest zdefiniowane jako m_1 = (- a) / b = (- 4) / 1 = -4 Krok -2 Dwie linie są równoległe. Stąd ich nachylenia są równe Nachylenie wymaganej linii wynosi m_2 = m_1 = -4 Krok - 3 Równanie wymaganej linii y = mx + c Gdzie-m = -4 x = 1 y = 2 Znajdź c c + mx = y c + (- 4) 1 = 2 c-4 = 2 c = 2 + 4 = 6 Po poznaniu c użyj nachylenia -4 i przechwyć 6, aby znaleźć r
Jakie jest równanie linii, która przechodzi przez początek i jest prostopadłe do linii, która przechodzi przez następujące punkty: (3,7), (5,8)?
Y = -2x Przede wszystkim musimy znaleźć gradient linii przechodzącej przez (3,7) i (5,8) „gradient” = (8-7) / (5-3) „gradient” = 1 / 2 Skoro nowa linia jest PERPENDICULARNA do linii przechodzącej przez 2 punkty, możemy użyć tego równania m_1m_2 = -1, gdzie gradienty dwóch różnych linii po pomnożeniu powinny być równe -1, jeśli linie są prostopadłe do siebie, tj. pod właściwymi kątami . stąd twoja nowa linia będzie miała gradient 1 / 2m_2 = -1 m_2 = -2 Teraz możemy użyć formuły gradientu punktu, aby znaleźć twoje równanie linii y-0 = -2 (x-0) y = - 2x