Odpowiedź:
Oto jak to zrobiłem:
Wyjaśnienie:
Forma nachylenia punktu jest pokazana tutaj:
Jak widzisz, musimy znać wartość nachylenie i wartość jednego punktu.
Aby znaleźć nachylenie, używamy formuły
Podłączmy więc wartość punktów:
Teraz upraszczaj:
Nachylenie jest
Ponieważ mamy wartość dwóch punktów, umieśćmy jeden z nich w równaniu:
Mam nadzieję że to pomoże!
Linia n przechodzi przez punkty (6,5) i (0, 1). Jaki jest punkt przecięcia linii y, jeśli linia k jest prostopadła do linii n i przechodzi przez punkt (2,4)?
7 jest przecięciem y linii k Najpierw znajdźmy nachylenie linii n. (1-5) / (0-6) (-4) / - 6 2/3 = m Nachylenie linii n wynosi 2/3. Oznacza to, że nachylenie linii k, która jest prostopadła do linii n, jest ujemną odwrotnością 2/3 lub -3/2. Zatem równanie, które mamy do tej pory, jest: y = (- 3/2) x + b Aby obliczyć b lub punkt przecięcia y, wystarczy podłączyć (2,4) do równania. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Więc punkt przecięcia y wynosi 7
Jakie jest równanie linii w standardowej postaci, która przechodzi przez punkt (-1, 4) i jest równoległa do linii y = 2x - 3?
Kolor (czerwony) (y = 2x + 6) „obie linie mają takie samo nachylenie” „dla linii y =” kolor (niebieski) (2) x-3 ”„ nachylenie = 2 ”„ dla czerwonej linii ” nachylenie = 2 = (y-4) / (x + 1) 2x + 2 = y-4 y = 2x + 2 + 4 kolor (czerwony) (y = 2x + 6)
Jakie jest równanie linii, która przechodzi przez początek i jest prostopadłe do linii, która przechodzi przez następujące punkty: (3,7), (5,8)?
Y = -2x Przede wszystkim musimy znaleźć gradient linii przechodzącej przez (3,7) i (5,8) „gradient” = (8-7) / (5-3) „gradient” = 1 / 2 Skoro nowa linia jest PERPENDICULARNA do linii przechodzącej przez 2 punkty, możemy użyć tego równania m_1m_2 = -1, gdzie gradienty dwóch różnych linii po pomnożeniu powinny być równe -1, jeśli linie są prostopadłe do siebie, tj. pod właściwymi kątami . stąd twoja nowa linia będzie miała gradient 1 / 2m_2 = -1 m_2 = -2 Teraz możemy użyć formuły gradientu punktu, aby znaleźć twoje równanie linii y-0 = -2 (x-0) y = - 2x